期刊文献+

基于多特征融合的复杂光照人脸识别 被引量:7

Face recognition under complex illumination conditions based on multi-feature fusion
下载PDF
导出
摘要 提取人脸图像光照不变量是提高不完备训练样本人脸识别光照鲁棒性的一个有效途径。以往算法分别从不同角度提取人脸图像的高频特征作为光照不变量不能提取完整的人脸本征,具有一定的局限性。从特征级和决策级融合的角度提出了一种基于多特征融合的复杂光照人脸识别方法。所提算法能发挥不同光照不变量的自身优势,明显提高复杂光照人脸识别的光照鲁棒性。Yale B^+和非控光照人脸库的实验结果表明所提算法的有效性。 Extracting illumination invariants from face image is an effective way to improve the robust-illumination performanceof incomplete training sample face recognition.The previous algorithms extracting the high frequency characteristicsof face image from different angles as illumination invariants can’t get integral essential feature of face and havesome limitations.In this paper,from the perspective of feature level and decision level fusion,a complex illumination facerecognition method based on multi-feature fusion is proposed.The proposed algorithm can utilize the different advantagesof several illumination invariants and improve the robust-illumination performance of face recognition under complexlighting environment.The experimental results on the Yale B+and the uncontrolled lighting face database show that theproposed algorithm is effective.
作者 程勇 CHENG Yong(School of Communication Engineering, Nanjing Institute of Technology, Nanjing 211167, China;Fujian Provincial Key Laboratory of Information Processing and Intelligent Control(Minjiang University), Fuzhou 350121, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第14期39-44,共6页 Computer Engineering and Applications
基金 江苏省科技计划项目(No.BY2016008-06) 闽江学院福建省信息处理与智能控制重点实验室开放课题资助(No.MJUKF201712) 南京工程学院校级科研基金(No.PTKJ201604) 南京信息工程大学江苏省气象传感网技术工程中心重点实验室开放基金(No.KDXS1503)
关键词 光照不变量 多特征融合 主成分分析 人脸识别 illumination invariants multi-feature fusion principal component analysis face recognition
  • 相关文献

参考文献5

二级参考文献96

  • 1Li Y, Powers D, Peach J. Comparison of blind source separation algorithms[Z]. Advances in Neural Networks and Applications,World Scientific Engineering Society,2000.18-23.
  • 2Bartlett M S, Lades H M, Sejnowski T J. Independent component representations for face recognition [J]. Proceedings of SPIE, 1998,2399(3):528-539.
  • 3Liu C J, Wechsler H. Comparative assessments of independent analysis(ICA) for face recognition[C]. In: Proceedings of International Conference on Audio and Video-Based Biometric Person Authentication, USA:Washington DC,1999.
  • 4Baek K, Draper B A, Beveridge J R, et al. PCA vs. ICA: A comparison on the FERET data set[C]. In: Proceedings of International Conference on Computer Vision. Pattern Recognition and Image Proceedings, North Carolina:Durham,2002.
  • 5Hyvarinen A. Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Trans on Network, 1999,10(3 ):626-634.
  • 6Hyvarinen A. Survey on independent component analysis [J].Neural Computing Surveys, 1999,(2):94-128.
  • 7Bartlett M S, Sejnowski. T J. Independent of face images: a representation for face recognition [C]. In: Proceedings of the Fourth Annual Joint Symposium on Neural Computation, Pasadena, CA,USA, 1997.
  • 8Deniz O, Castrillon M, Hemandez M. Face recognition using independent component analysis and support vector machines[A].In: Josef Bigun, Fabrizio Smeraldi, editors, Third International Conference Audio- and Video-Based Biometric Person Authentication(AVBPA) [C]. Computer Science, Halmstad, Sweden,2001.59-64.
  • 9Yambor W S, Draper B A, Beveridge J R. Analyzing PCA-based face recognition algorithms: Eigenvectors selection and distance measures[C]. In: Proceedings of the 2nd Workshop on Empirical Evaluation in Computer Vision, lreland" Dublin, 2000.
  • 10Comon E Independent component analysis: A new concept[J],Signal Processing, 1994,36(3):287-314.

共引文献52

同被引文献42

引证文献7

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部