期刊文献+

行路由PEA广度贪心调度映射算法 被引量:1

Breadth greedy scheduling mapping algorithm for row routing PEA
下载PDF
导出
摘要 粗粒度可重构单元阵列硬件任务的贪心映射是可重构计算要解决的核心问题。不同的阵列具有不同的硬件约束条件,针对行路由粗粒度可重构单元阵列提出一种广度贪心映射算法BGMA(Breadth Greedy Mapping Algorithm)。该算法首先从第一个节点开始依次扫描,如果节点满足条件则将其映射到PEA上,当遇到不满足映射条件的节点时,该算法将跳过该节点继续寻找满足约束条件的节点进行映射,通过与广度不贪心映射算法BNGMA(Breadth No Greedy Mapping Algorithm)相比较,BGMA的N1平均减少了35.1%(PEA_(6×6))和54.8%(PEA_(8×8)),N2平均减少了35.6%(PEA_(6×6))和54.6%(PEA_(8×8)),C_(CON)平均减少了15.7%(PEA_(6×6))和26.2%(PEA_(8×8)),T_(TOTAL)平均减少了20.2%(PEA_(6×6))和32.1%(PEA_(8×8))。实验结果表明了贪心策略在映射算法中的重要性。 Greedy mapping of hardware tasks in coarse-grained reconfigurable cell array is the key problem that reconfigurablecomputing should solve.Different arrays have different hardware constraints,this paper proposes a Breadth GreedyMapping Algorithm(BGMA)based on row routing coarse-grained reconfigurable cell array.The algorithm starts scanningfrom the first node,if the node satisfies the condition,it will be mapped to the PEA.When a node does not meet themapping conditions,the algorithm will skip the node to continue to find nodes that meet the constraints to map.To becompared with the Breadth No Greedy Mapping Algorithm(BNGMA),on average,the N1of BGMA decreased by35.1%(PEA6×6)and54.8%(PEA8×8),the N2of BGMA decreased by35.6%(PEA6×6)and54.6%(PEA8×8),the CCON of BGMAdecreased by15.7%(PEA6×6)and26.2%(PEA8×8),the TTOTAL of BGMA decreased by20.2%(PEA6×6)and32.1%(PEA8×8).Experimental evaluations confirm the importance of the greedy strategy in the mapping algorithm.
作者 何瑞祥 陈乃金 HE Ruixiang;CHEN Naijin(College of Computer and Information Science, Anhui Polytechnic University, Wuhu, Anhui 241000, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第14期65-69,75,共6页 Computer Engineering and Applications
基金 安徽省自然科学基金(No.1408085MF124) 安徽省高校省级自然科学基金重点项目(No.kj2015A003) 安徽工程大学国家自然科学预研基金
关键词 贪心映射 硬件约束 行路由 广度贪心 广度不贪心 greedy mapping hardware constraint row routing breadth greedy breadth no greedy
  • 相关文献

参考文献3

二级参考文献34

  • 1陈乃金,江建慧.考虑通信成本和硬件碎片利用的簇划分算法[J].计算机辅助设计与图形学学报,2015,27(4):754-763. 被引量:1
  • 2于苏东.可重构处理器的软硬件协同设计研究[D].北京:清华大学,2009.
  • 3CARDOSO J M P, DINIZ P C, WEINHARDT M. Compiling for reconfigurable computing: a survey[J]. ACM Computing Surveys, 2010, 42(4): 1301-1365.
  • 4SALVADOR R, OTERO A, MORA J, et al. Self-reconfigurable ev- olvable hardware system for adaptive image processing[J]. IEEE Transactions on Computers, 2013, 62(8): 1481 - 1493.
  • 5AHN Y, HAN K, LEE G, et al. SoCDAL: system-on-chip design ac- celerator[J]. ACM Transactions on Design Automation of Electronic Systems, 2008, 13(1): 171-176.
  • 6GOLDSTEIN S C, SCHMIT H, BUDIU M, et al. PipeRench: a reeon- figurable architecture and compiler[J]. Computer, 2000,33(4): 70-77.
  • 7MIYAMORI T, OLUKOTUN K,BUDIU M, et al. REMARC: recon- figurable multimedia array coprocessor[J]. IEICE Transactions on In- formation and Systems,1999, E82-D(2): 389-397.
  • 8MEI B,VERNALDE S,VERKEST D, et al. ADRES: an architecture with tightly coupled VLIW processor and coarse-grained reconfignr- able matrix[A]. Proceedings of 13th International Conference on Field Programmable Logic and Application[C]. Lisbon Portugal, Springer Press, 2003.61-70.
  • 9S1NGH H, LEE M H, LUG M, et al. MorphoSys: an integrated recon- figureable system for data parallel and computation intensive applica- tions[J]. IEEE Transactions on Computers, 2000, 49(5): 465-481.
  • 10MEI B,VERNALDE S,VERKEST D, et al. DRESC: a retargetable compiler for coarse-grained reconfigurable architectures[A]. Proceed- ings of 2002 IEEE International Conference on Field- Programmable Technology (FPT)[C]. Hong Kong, China,2002. 166-173.

共引文献24

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部