期刊文献+

基于采样的半监督支持向量机软件缺陷预测方法 被引量:7

Software defect prediction using semi-supervised support vector machine with sampling
下载PDF
导出
摘要 软件缺陷预测有助于提高软件开发质量,保证测试资源有效分配。针对软件缺陷预测研究中类标签数据难以获取和类不平衡分布问题,提出基于采样的半监督支持向量机预测模型。该模型采用无监督的采样技术,确保带标签样本数据中缺陷样本数量不会过低,使用半监督支持向量机方法,在少量带标签样本数据基础上利用无标签数据信息构建预测模型;使用公开的NASA软件缺陷预测数据集进行仿真实验。实验结果表明提出的方法与现有半监督方法相比,在综合评价指标F值和召回率上均优于现有方法;与有监督方法相比,能在学习样本较少的情况下取得相当的预测性能。 Software defect prediction is helpful to improve the quality of software and effectively allocate test resources.To tackle two practical yet important issues in software defect prediction:labeled data is hard to be collected and classimbalance,a sample based semi-supervised support vector machine method is proposed.This method uses an unsupervisedsample approach to sample a small percentage of modules to be tested and labeled,and this sample method canensure that the defect instances in training sets are not too few.Semi-supervised support vector machine algorithm usesfew labeled data combined with unlabeled to build predictor so that the model can exploit the information of unlabeleddata.In the evaluation on four NASA projects,the experimental results show that the proposed approach achieves comparableperformance compared with supervised learning models,but uses little defect information.Moreover,proposedmethod’s performance is better than other semi-supervised learning methods in terms of recall and F-measure.
作者 廖胜平 徐玲 鄢萌 LIAO Shengping;XU Ling;YAN Meng(School of Software Engineering, Chongqing University, Chongqing 401331, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第14期161-166,共6页 Computer Engineering and Applications
基金 国家自然科学重点基金(No.91118005) 重庆市研究生科研创新项目(No.CYS14008)
关键词 软件缺陷预测 半监督 SAFE 半监督支持向量机(S4VM) 类不平衡 采样 software defect prediction semi-supervised Safe Semi-Supervised Support Vector Machines(S4VM) class imbalance sample
  • 相关文献

参考文献3

二级参考文献30

  • 1Challagulla V U B, Bastani F B, I-Ling Yen, Paul R A. Empirical assessment of machine learning based software defect prediction techniques//Proceedings of the 10th IEEE International Workshop on Object-Oriented Real-Time Dependable Systems. Washington, DC, USA, 2005:263-270.
  • 2Lyu Michael R. Handbook of Software Reliability Engineering. New York: IEEE Computer Society Press and McGrawHill Book Company, 1996.
  • 3Khoshgoftaar Taghi M, Seliya Naeen. Tree-based software quality estimation models for fault predietion//Proeeedings of the 8th International Symposium on Software Metrics. Washington, 13(3, USA, 2002x 123-128.
  • 4Stich Timothy Janes, Spoerre Julie K, Velasco Tomas. The application of artificial neural networks to monitoring and control of an induction hardening process. Journal of Industrial Technology, 2000, 16(1): 1-11.
  • 5Ohlsson Niclas, Alberg Hans. Predicting fault-prone software modules in telephone switches. IEEE Transactions on Software Engineering, 1996, 22(12): 886-894.
  • 6Khoshgoftaar Taghi M, Seliya Naeem. Software quantity classification modeling using the SPRINT decision tree algorithm//Proceedings of the 14th IEEE International Conference on Tools with Artificial Intelligence. Washington, DC, USA, 2002:365-367.
  • 7Briand L C, Melo W L, Wust J. Assessing the applicability of fault-proneness models across object-oriented software projects. IEEE Transactions on Software Engineering, 2002, 28(7) : 706-720.
  • 8Cortes Corinna, Vapnik Vladimir. Support-vector networks. Machine Learning, 1995, 20(3): 273-297.
  • 9Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
  • 10Wang X H, Shu P, Cao Let al. A ROC curve method for performance evaluation of support vector machine with optimization strategy. Computer Science Technology and Applications, 2009, (2) :117-120.

共引文献57

同被引文献47

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部