期刊文献+

空间垂直方向位移在行为识别中的应用

Application of displacement of gravitational orientation in activity recognition
下载PDF
导出
摘要 为了提高行为识别中上下楼识别的准确率,提出一种利用重力方向位移变化对上下楼区分的方法。将手机坐标系的加速度数据转换为大地坐标系的加速度数据,再利用大地坐标垂直方向的加速度分量得出垂直方向的位移量,并将位移量作为垂直方向的特征值之一。水平方向的特征值、合成加速度的特征值和垂直方向的特征值作为分类器的输入。实验结果表明,在不计手机放置位置时上下楼的识别率提高了10%以上,因此该方法有效地提高了行为识别的准确率。 In order to improve the recognition accuracy of ascending stair and descending stair activities,a method that uses the displacement of gravitational orientation to recognize ascending stairs and descending stairs is proposed in this paper.Theacceleration data acquired from mobile phone is transformed into the acceleration data of azimuth coordination,and the displacement of gravitational orientation is achieved by means of acceleration component in gravitational orientation of azimuth coordination.The displacement is used as one of the gravitational orientation characteristic values.The characteristic values in horizontaldirection,resultant acceleration and gravitational orientation are taken as the input of classifier.The experimental results showthat the recognition accuracy of ascending stair and descending stair activities improves10%no matter where mobile phone isput.Therefore,this method can effectively improve the accuracy of activity recognition.
作者 王忠民 郭强 王文浪 WANG Zhongmin;GUO Qiang;WANG Wenlang(Academy of Computer Science and Technology,Xi’an University of Posts and Telecommunication,Xi’an 710121,China)
出处 《现代电子技术》 北大核心 2017年第14期10-14,共5页 Modern Electronics Technique
基金 国家自然科学基金资助项目(61373116) 陕西省教育科学"十二五"规划课题(SGH140601) 西安邮电大学校青年基金项目(ZL2014-27)
关键词 行为识别 坐标转换 垂直方向位移 数据转换 activity recognition coordinate transformation gravitational orientation displacement data conversion
  • 相关文献

参考文献5

二级参考文献46

  • 1薛洋.基于单个加速度传感器的人体运动模式识别[D].广州:华南理工大学.2011.
  • 2Krishnan N C.A Computational Framework for Wearable Accelerometer Based Activity and Gesture Recognition[D].USA:Arizona State University,2010:14-25.
  • 3Lustrek M,Kaluza B.Fall detection and activity recognition with machine learning[J].Informatics(Ljubljana),2009,33(2):205-212.
  • 4Sensors Overview_Android Developers.(2014-03-30)[2014-04-20].http://developer.android.com/guide/topics/sensors/sensors_verview.html.
  • 5Incel O D,Kose M,ErsoyIncel C.A Review and Taxonomy of Activity Recognition on Mobile Phones[J].Springer BioNanoScience Journal,2013,3(2):145-171.
  • 6Lane N D,Miluzzo E,Lu H,et al.A survey of mobile phone sensing[J].Communications Magazine,IEEE,2010,48(9):140-150.
  • 7Hsu Chih-Wei,Chang Chih-Chung,Lin Chih-Jen.A practical guide to support vector classification[J].Bioinformatics,2010,1(1):1-16.
  • 8Chang Chih-Chung,Lin Jen.LIBSVM:A Library for Support Vector Machines.(2014-04-01)[2014-04-25].http://www.csie.ntu.edu.tw/~cjlin/libsvm.
  • 9Zheng Yu,Liu Like,Wang Long hao. Learning transportation mode from raw gps data for geographic applications on the web[A].ACM Press,2008.247-256.
  • 10Wang Shuang quan,Chen Can feng,Ma Jian. Accelerometer based transportation mode recognition on mobile phones[A].ShenZhen:IEEE Press,2010.44-46.

共引文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部