期刊文献+

分布式并行云存储系统Parastor及在石油勘探领域的应用 被引量:3

The development of distributedcloud storage system and its application in oil exploration field
下载PDF
导出
摘要 针对石油勘探领域的发展现状与日益增长的海量地震数据存储的需求,探索将云技术应用到石油勘探业务系统中。选用新型高效的Parastor并行分布式云存储文件系统,构建石油勘探云存储一体化架构。该系统包括存储子系统、计算子系统、网络子系统、地震资料处理与计算子系统,从而解决了石油勘探行业大规模数据存储,高I/O带宽与高浮点计算性能需求。其中存储子系统Parastor由硬件节点层、数据处理层与应用协议层三层架构组成,具有强大的小文件聚合与高效数据容错重构功能。与传统的分布式文件系统架构相比,该架构在系统扩展性、可靠性和服务性等多方面均更加具有优势。能够适应日益增长的石油勘探系统海量数据存储需求,解决石油勘探系统中大容量数据存储的瓶颈,从而为用户提供高质量的云存储服务。 For gradually increasement requirement of the development of oil exploration and massive seismic data storage, cloud storage is applied to oil exploration system.The distributed Cloud storage integrated architecture of oil exploration is constructed by a new and efficient parastor parallel distributed file system. This system includes storage sub-system, computing sub-system, network sub-system,seismic data processing and interpretation sub-system.This cloud storage system is applied to resolve the requirement of massive data storage of petroleum exploration, high I/O bandwidth and high floating computing. The storage sub-system inclues three parts,hardware node layer, data processing layer and application protocal layer.It has two strong functions, small files aggregration and high efficient data fault tolerance. Finally, the design of the cloud storage architecture is better than traditional distributed files system infrastructure in terms of system scalability, reiability, service and other aspects. Parastor can provide high quality cloud storage service.It could meet the demand of massive data storage for the growing petroleum exploration system, and solve the bottleneck of massive data storage.
出处 《石油工业计算机应用》 2017年第2期7-12,2,共6页 Computer Applications Of Petroleum
关键词 海量数据 分布式云存储 Parastor 石油勘探一体化 Massive data Distributed cloud storage Parastor Intergration of oil exploration
  • 相关文献

参考文献5

二级参考文献59

  • 1Sanjay Ghernawat, Howard Gobioff, Shun-Tak Leung. The Google file system E A] .Proc of the 19th ACM Symposium on Operating Systems Principles [C]. New York: ACM Press, 2003.29 - 43.
  • 2Dhruba Borthaku. The Hadoop Distributed File System: Architecture and Design E EB/OL 1. http://hadoop, apache, org/ common/docs/r0.16.0/hdfs_ design, pdf, 2011.
  • 3Hbase Development Team. Hbase: Bigtable-Like Slructured Storage for Hadoop Hdfs [ EB/OL ]. http://wiki, apache. org/hadoop/Hbase, 2011.
  • 4Amazon. Amazon Simple Storage Service[EB/OL]. http:// www. amazon, com/s3,2011.
  • 5Yunhong Gu, Robert L Grossman. Sector and sphere: The design and implementation of a high-performance data cloud ~ J]. Philosophical Transactions of the Royal Society, 2009, 367A: 2429 - 2445.
  • 6Robert L Grossman, Yunhong Gu.Data mining using high per- formance data clouds: Experimental studies using sector and sphere [ A ]. Proc of the 14th ACM SIGKDD [ C ]. Las Vegas: ACM Press, 2008.920 - 927.
  • 7James Bmberg,Rajkumar Buyya,Zahir Taft. Creating a 'cloud storage' mashup for high performance, low cost content delivery [A]. Proc of the 6th International Conference on Service- Oriented Computing [ C ]. ICSOC 2008, Australia, Springer, LNCS 5472,2009. 178- 183.
  • 8James Broberg, Zahir Taft. MetaCDN: Harnessing storage clouds for high performance content delivery [A]. Proc of the 6th International Conference on Service-Oriented Computing [C], ICSOC 2008, Australia, Springer, LNCS 5364,2008.730 - 731.
  • 9Kevin D Bowers, Ari Juels, Alina Oprea. HAIL: A High- Availability and Integrity Layer for Cloud Storage I EB/ OL ]. http: / / eprint, iacr. org/, 2011.
  • 10David Tarrant, Tim Brody, Leslie Cart. From the Desktop to the Cloud: Leveraging Hybrid Storage Architectures in Your Repository [ EB/OL ]. http://eprints, ecs. soton, ac. uk/ 17084/1/or09. pdf, 2011.

共引文献82

同被引文献24

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部