期刊文献+

一种基于速度强度熵与纹理特征的人群异常检测算法 被引量:1

An anomaly detection algorithm based on VMME and texture features
下载PDF
导出
摘要 人群异常事件检测是智能视频监控领域的重要研究内容,文章提出了一种融合速度强度熵VMME与纹理特征的人群异常行为检测算法.该算法采用LBPCM算法提取图像纹理特征,在视频帧计算光流基础上,获得特征点速度强度图,并以其熵VMME作为场景运动特征,将场景纹理特征和运动特征送入支持向量机训练分类.实验表明,新算法可实现对人群异常行为的检测,且有较高准确率. In the field of intelligent video surveillance,the detection of abnormal events has remained animportant subject in the research field.This paper proposes an algorithm for detecting abnormal behavior ofcrowds based on entropy of velocity magnitude map(VMME)and texture feature.Through the computation ofoptical flow in a video frame,the velocity magnitude map of feature points can be obtained,and the entropy ofvelocity magnitude map can be calculated as the feature of scene motion.LBPCM is first used to extract thetexture features of the crowd,then the features of two kinds are fused into the support vector machine fortraining classification.Experiments show that the algorithm can effectively detect abnormal behavior and hashigh detection accuracy rate.
作者 李斐 陈恳 李萌 郭春梅 LI Fei;CHEN Ken;LI Meng;GUO Chun-mei(Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo 315211, China)
出处 《宁波大学学报(理工版)》 CAS 2017年第4期63-67,共5页 Journal of Ningbo University:Natural Science and Engineering Edition
基金 国家自然科学基金(60972063) 宁波市自然科学基金(2014A610065) 宁波大学学科项目基金(XKXL1308)
关键词 人群异常检测 纹理特征 运动特征 VMME LBPCM crowd anomaly detection texture feature motion feature VMME LBPCM
  • 相关文献

参考文献2

二级参考文献24

  • 1陈俊超,张俊豪,刘诗佳,陆小锋.基于背景建模与帧间差分的目标检测改进算法[J].计算机工程,2011,37(S1):171-173. 被引量:23
  • 2李炳宇,萧蕴诗,汪镭.PSO算法在工程优化问题中的应用[J].计算机工程与应用,2004,40(18):74-76. 被引量:53
  • 3刘正光,林雪燕,车秀阁.基于二维灰度直方图的模糊熵分割方法[J].天津大学学报(自然科学与工程技术版),2004,37(12):1101-1104. 被引量:7
  • 4魏志强,纪筱鹏,冯业伟.基于自适应背景图像更新的运动目标检测方法[J].电子学报,2005,33(12):2261-2264. 被引量:54
  • 5徐军.红外图像中小目标检测技术研究[D].西安:西安电子科技大学.2001.
  • 6张雨丝.基于背景差分的光照鲁棒性运动目标检测与跟踪技术研究[D].四川:西南交通大学,2011.
  • 7DENMAN S,CHANDRAN V,SRIDHARAN S.An adaptive optical flow technique for person tracking system[J].Pattern Recognition Letters,2007,28(10):1232-1239.
  • 8JAYABALAN E,KRISHNAN Dr A,PUGAZENDI R.Non rigid object tracking in aerial videos by combined snaked and optical flow technique[J].Computer Graphics,Imaging and Visualisation,2007,21(6):388-396.
  • 9HARITAOGLU D.Real-time surveillance of people and their activities[J].IEEE Transaction on Pattern Analysis and MaChine Intelligence,2000,22(7):809-830.
  • 10COLLINS R,LIPTON A,KANADE T,et al.A system for video surveillance and monitoring:VSAM final report [R].America:Carnegie Mellon University,Technical Report:CMU-RI-TR-00-12,2000.

共引文献139

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部