期刊文献+

AXIG及其基于双逻辑的面积优化 被引量:1

AXIG and Area Optimization Based on Dual-Logic
下载PDF
导出
摘要 针对逻辑函数基于单一的传统布尔逻辑(TB逻辑)进行逻辑优化的局限性,提出基于TB逻辑和Reed-Muller逻辑(RM逻辑)的双逻辑图形表示的面积优化方法.首先将逻辑函数表示成以"与"、"异或"、"非"为运算集的AXIG(AND/XOR/INV graph),得到逻辑函数的双逻辑图形表示;然后将所得到的AXIG划分成适合TB逻辑和适合RM逻辑的2部分分别进行逻辑优化;最终实现逻辑函数的面积优化.实验结果表明,该方法优于已有的逻辑综合方法. To overcome the limitation based on single traditional Boolean(TB)logic optimization of logicfunction,the area optimization method based on TB logic and Reed-Muller(RM)logic called dual logic withgraph representation is proposed.Firstly,logic function is represented in called AXIG(AND/XOR/INVGraph)based on the operator set of AND,XOR,INV and dual logic graph representation of logic function isobtained.Then,the obtained AXIG is partitioned into two parts with suitable for TB logic and RM logic implementation,respectively.Finally,the area optimization of logic function is implemented.Experimentalresults show that the proposed method is more efficient than published logic synthesis method.
作者 赵思思 夏银水 张骏立 厉琼莹 Zhao Sisi;Xia Yinshui;Zhang Junli;Li Qiongying(Institute of Circuits and System, Ningbo University, Ningbo 315211)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第7期1380-1388,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(61571248 6113001)
关键词 Reed-Muller逻辑 与异或非图 分解 面积优化 Reed-Muller logic AND-XOR-inverter graph partition area optimization
  • 相关文献

参考文献5

二级参考文献65

  • 1姚茂群,方平,陈偕雄.基于表格法的RM展开系数与或-符合展开系数的转换[J].浙江大学学报(理学版),2006,33(4):417-419. 被引量:3
  • 2Xia Yinshui,Ye Xien,Wang Lunyao,et al.Novel synthesis method of mixed polarity Reed-Muller functions[A].Proceedingsof third IASTED conference on Circuits,Signals,and Systems[C].Marina Del Rey,USA,2005.148-153.
  • 3D Debnath,T Sasao.A new equivalence relation of logic functions and its application in the design of AND-OR-EXOR networks[J].IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2007,E90-A(5):932-940.
  • 4T Sasao.A Design Method for AND-OR-EXOR Three-Level Networks[A].Proceedhags of International Workshop on Logic Synthesis[C].Lake Tahoe,California,1995.811-820.
  • 5E Dubrova,T Bengtsson.An algorithm for detecting XOR-type logic[A].Proceedings of 5th Intemational Workshop of Applications of the Reed Muller Expansion in Circuit Design[C].Starkville,Mississippi,USA,2001.271-276.
  • 6M Maxfield.A Reed-Muller extraction utility[OL].http://www.highbeam.com/doc/1G1-18371291.html,EDN,1996-4-11.
  • 7D Debnath,T Sasao.GRMIN:A heuristic simplification algorithm for generalized Reed-Muller expression[A].Proceedings of Asia and South Pacific Design Automation[C].Makuhari,Japan,1995.341-347.
  • 8Lu F, Cheng K. Sequential Equivalence Checking Based on K-th Invariants and Circuits SAT Solving[C]// Proceedings of the High-Level Design Validation and Test Workshop'05. New York: IEEE, 2005: 45-52.
  • 9Kuehlmann A. Dynamic Transition Relation Simplification for Bounded Property Checking[C]//Proceedings of the 2004 IEEE/ACM International Conference on Computer Aided Design. New York.. IEEE, 2004: 50-57.
  • 10Cook S. The Complexity of Theorem Proving Procedures[C]//ACM SIGACT Symposium on the Theory of Computing. New York: ACM, 1971: 151-158.

共引文献28

同被引文献2

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部