期刊文献+

一种广告投放定位算法的研究

Research into an Advertisement Placement Algorithm
下载PDF
导出
摘要 网络广告作为新兴的广告产业正在进行快速发展的发展,内容定向广告是近几年研究的主要方向,首先分析了网页广告的特征,针对内容定向的投放算法进行了研究,通过基于VSM的TF-IDF方法发现了网页广告文本之间的不足,引入正则表达式进行网页广告和文本的匹配,通过采用树形结构进行索引和过滤提高网页和文本的匹配率,最后通过改进的BM25算法提高了网页广告文本中的检索率。通过一定数量的网页内容和广告文本实验,表明本文的算法具有很好的有效性,提高了网页内容和广告文本的匹配率。 As an emerging advertising industry,online advertisements are developing rapidly and contenttargeted advertising is the main direction of research in recent years.This paper first analyzes features ofweb advertising,studies the algorithm of distributing content targeted advertisements,and findsdeficiencies of online advertisements’text through the VSM-based TF-IDF method.Then,regularexpression is introduced to match web advertisements and texts,tree structure is adopted for indexingand filtering to improve the matching rate of webs and texts,and finally improved BM25algorithm isadopted to improve the retrieval rate of texts in web advertisements.The experiments adopt certainamount of web contents and ad texts to indicate that algorithm in this paper is rather effective,improvingthe matching rate of web contents and ad texts.
作者 蔡志荣 Cai Zhirong(Shaoxing Vocational & Technical College,Zhejiang Shaoxing,312000,China)
出处 《科技通报》 北大核心 2017年第7期94-98,共5页 Bulletin of Science and Technology
基金 浙江省高校访问学者课题
关键词 网页广告 投放 正则表达式 BM25算法 web advertisement distribution regular expression BM25 algorithm
  • 相关文献

参考文献3

二级参考文献12

  • 1施水才,程涛,王霞,吕学强.基于网页内容的广告推介研究[J].中文信息学报,2007,21(4):42-47. 被引量:1
  • 2Chakrabarti D,Agarwal D,Josifovski V. Contextual advertising by combining relevance with click feedback. [C]//WWW 21308. Beijing,2008.
  • 3Manning C, Raghavan P, Schutze H. Introduction to Information Retrieval[ M]. Cambridge University Press,2008.
  • 4Ribeiro-Neto B, Cristo M, Golgher P B, et al. Impedance coupling in content-targeted advert/sing[ C ]//Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval. New York : ACM ,2005.
  • 5Sahami M, Heilman T. A web-based kernel function for matching short text snippets[ C ]//Proceedings of the Workshop on Learning in Web Search located at 22th International Conference on Machine Learning. New York : ACM,2005.
  • 6Benjamin E,Michael S.Internet Advertising and the Generalized Second-price Auction:Selling Billions of Dollars Worth of Keywords[J].American Economic Review,2007,97(1):242-259.
  • 7Robertson S E,Walker S,Beaulieu M.Okapi at TREC-7:Automatic Ad Hoc,Filtering,VLC and Teractive Track[C]// Proceedings of the-7th Text Retrieval Conference.Gaithersburg,Maryland,USA:[s.n.],1998:24-44.
  • 8Chakrabartl D,Agarwal D,Josifovski V.Contextual Advertising by Combining Relevance with Click Feedback[C]//Proceedings of the 17th International Conference on World Wide Web.Beijing,China:[s.n.],2008:417-426.
  • 9Agarwal D,Broder A,Chakrabarti D,et al.Estimating Rates of Rare Events at Multiple Resolutions[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Jose,USA:[s.n.],2007:16-25.
  • 10Auer P,Cesa-Blanchi N,Fischer P.Finite-time Analysis of the Multi-armed Bandit Problem[C]//Proceedings of the 19th International Conference on Machine Learning.Hingham,USA:[s.n.],2002:235-256.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部