期刊文献+

从航天遥测地面记录器到航天遥测地面系统云 被引量:4

From Ground-based Recorder in Space Telemetry System to Telemetry Ground-based System Cloud
下载PDF
导出
摘要 在总结航天遥测系统地面记录专业现状与发展趋势的基础上,梳理记录专业的发展主线,提出以记录设备信息架构升级和扩展数据融合处理功能为基础逐步实现航天遥测地面系统云平台的发展途径。探讨软件定义存储和开源存储技术对设计新型地面记录设备的影响,并针对三类软硬件平台,给出基于国产自主可控技术的地面记录设备研发思路。 In this paper the present status and development trend of ground-based recorder in space telemetry system aresummarized.The main way to develop the recorder is listed,that is based on the information architecture upgrade of therecorder and the function extension of data fusion,realizing the telemetry ground-based system cloud platform.Furthermore,the influence of software defined storage and open source storage technologies on the new ground-based recorder design isdiscussed.Finally,the ideas to develop the ground-based recorder based on domestic autonomous control technology are given.
作者 苏丽 余卫国 熊建林 Su Li;Yu Weiguo;Xiong Jianlin(Beijing Research Institute of Telemetry, Beijing 100076, China)
出处 《遥测遥控》 2017年第3期1-6,共6页 Journal of Telemetry,Tracking and Command
关键词 航天遥测系统 地面记录 遥测标准 遥测地面系统云 Space telemetry system Ground-based recorder Telemetry standards Telemetry ground-based system cloud
  • 相关文献

参考文献3

二级参考文献21

  • 1Manyika J, Chui M, Brown B, et al. Big Data: The Next Frontier for Innovation,Competition, and Productivity [ R]. McKinsey Global Institute, 2011 : 1 - 137.
  • 2Big Data Across the Federal Government [ R/OL]. www. whitehouse, gov/sites/default/files/microsites/ostp/big_data_ fact_sheet_final_l, pdf, March 29,2012.
  • 3Open Data Set[ DB/OL]. https ://open-data. europa, eu/en/data/dataset, May 30,2014/January 26,2015 .
  • 4Big Data for Development : Challenges & Opportunities [ R/OL ]. http ://unglobalpulse. org/sites/default/files/BigDat- aforDevelopment-UNGlobalPulseJune2012, pdf, May ,2012.
  • 5Hadoop [ EB/OL]. http://hadoop, apache, org/December 12,2014/January 26,2015.
  • 6NASA. Tech Briefs[ R~. June 2013.
  • 7James Williams. NASA~s Nebula Cloud Computing Initiative, Cloud Innovation at NASA [ C ]//NASA Ames Research Center, February 2012.
  • 8Dean J, Ghemawat S. Map Reduce: Simplified Data Processing on Large Clusters [ C ]//In Proceedings of the Sixth Symposium on Operating System Design and Implementation, San Francisco, CA:Usenix Association, 2004.
  • 9Cloud Computing for Aerospace and Defense[ M]. IBM Sales and Distribution White paper.
  • 10Dewan Hrishikesh, Hansdah R C. A Survey of Cloud Storage Facilities[ C]//2011 IEEE World Congress on Services, 2011 : 224 -231.

共引文献13

同被引文献36

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部