期刊文献+

支持异构数据按需集成的数据服务聚合代数 被引量:1

Data service aggregation algebra for supporting heterogeneous on-demand data integration
下载PDF
导出
摘要 传统的数据集成方法无法应对互联网的开放、动态和异构性,对用户即时、个性化的集成需求支持有限。数据服务是互联网环境下数据集成的基本单元。提出了数据服务聚合代数,基于嵌套关系和嵌套表格提供的良好的可视化集成环境,提供了基于语义映射关系的集成理论体系,支持在异构环境下复杂数据的直接集成,能够为数据按需快速集成提供强有力的支撑。聚合代数提供了一系列的性质保障,保证集成过程中的数据完整性和正确性。通过一个案例说明了数据服务聚合代数的效果。 Traditional data integration approaches cannot handle heterogeneous and dynamic characteristics of the Internet,and cannot support on-demand and personalized integration requirements.Data service is the basic unit for data integration onInternet.This paper proposes a data service aggregation algebra,which makes use of the nested-relation and nested-table asa visualized integration environment.The algebra enables the integration process based on sematic mappings betweendata sources,making it possible to integrate data in heterogeneous environments directly,so as to provide strong theoreticalsupport for quickly on-demand data integration.The algebra provides a set of properties to ensure the data integrityand correctness during the integration process.A case study demonstrates the effect of data service aggregation algebra.
作者 张博 温彦 陈明 陈婷婷 ZHANG Bo;WEN Yan;CHEN Ming;CHEN Tingting(College of Mining and Security Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China;College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China;State Grid Corporation of China, Qingdao Power Supply Company, Qingdao, Shandong 266100, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第15期68-76,共9页 Computer Engineering and Applications
基金 教育部博士点基金(No.20133718120011) 2014青岛市博士后博士后研究人员应用研究项目 国家自然科学基金(No.61502281 No.61472229 No.61202152) 山东省科技发展项目(No.2014GGX101035) 山东省优秀中青年科学家科研奖励基金(No.2014BSB01020) 青岛市开发区项目(No.2013-1-24) 山东省泰山学者攀登计划专项 山东科技大学科研创新团队支持计划项目(No.2015TDJH102)
关键词 数据服务 嵌套关系 聚合代数 数据集成 异构数据 数据映射 data service nested relation aggregation algebra data integration heterogeneous data data mapping
  • 相关文献

参考文献2

二级参考文献19

  • 1Cafarella M J, Halevy A, Wang D Z, et al. WebTables: Exploring the Power of Tables on the Web[C]//Proceedings of VLDB-08.Auckland, New Zealand, 2008 : 538-549.
  • 2CrestanE, Pantel P. Web-Scale Knowledge Extraction from Semi- Structured Tables[C]// Proceedings of WWW-2010. Raleigh, North Carolina, USA, 2010.
  • 3Liu Bing.Web Data Mining[M].俞勇,薛贵荣,韩定一,译.北京:清华大学出版社,2009:265-26.
  • 4Chen H,Tsai S, Tsai J. Mining Tables from Large-Scale HTML Texts[C] // Proceedings of COLING-00. Saarbrticken, Germa- ny, 2000.
  • 5Robert G, Wilks Y. Information extraction: Beyond document retrieval[J]. Journal of Documentation, 1998,54( 1 ) : 70-105.
  • 6Gatterbauer W, Bohunsky P, Herzog M, et al. Towards Domain- Independent Information Extraction from Web Tables[C]//Pro- ceedings of WWW-07. Banff, Canda, 2007: 71-80.
  • 7DO H H,RAHM E. COMA.a system for flexible combination of schema matching approaches[A].New York,USA:ACM,2001.610-621.
  • 8NOY N F,MUSEN M A. The PROMPT suite:interactive tools for ontology merging and mapping[J].International Journal of Human-Computer Studies,2003,(05):983-1024.
  • 9WANG G,YANG S,HAN Y. Mashroom:end-user mashup programming using nested tables[A].New York,USA:ACM,2009.861-870.
  • 10KONGDENFHA W,BENATALLAH B. Rapid development of spreadsheet-based web mashups[A].New York,USA:ACM,2009.851-860.

共引文献1

同被引文献6

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部