期刊文献+

粒子寻优和最小生成树聚类下的WSN能量优化

Approach to WSN energy optimization based on particle optimization and MST clustering
下载PDF
导出
摘要 为了均衡分簇无线传感器网络节点能量负载,提高网络的能量利用效率,提出了一种粒子寻优和最小生成树聚类规则的能量优化算法(OMST)。该算法为了使得簇头的能量负载能够得到均衡,采用基于粒子寻优的方法来进行适应值求解,通过适应值对比来求得最佳簇头,以减少簇内节点的传输能耗。同时,提出一种最小生成树聚类规则的簇首数量选择方法,该方法基于剩余能量和距离因素来选择最优的簇首数量,在保证数据传输质量的同时最小化网络总能量的消耗量。仿真结果表明,相比一种新型差分进化的无线传感器网络聚类算法和多层节能及距离感知的无线传感器网络聚类算法,OMST算法的节点平均能量效率分别提高了16.7%和6.4%,网络节点存活数量分别提高了24.1%和13.7%。 To balance clustering wireless sensor network nodes energy load,and improve the energy efficiency of thenetwork,an energy optimization algorithm based on particle optimization and the minimum spanning tree clustering rulesis proposed.In order to achieve the balanced energy cluster head load,particle optimization-based approach is used in thisalgorithm to solve the adaptation value,then the best cluster head is obtained based on the compared adaptation value andthe transmission of energy is reduced by adapting fitness.Then,a minimum spanning tree clustering rule number clusterhead selection method is proposed,based on the residual energy and distance factors,it selects the optimal number ofclusters of the first,to ensure the quality of the data transmission network while minimizing the total energy consumption.Simulation results show that,the wireless sensor network clustering algorithm for wireless sensor networks clusteringalgorithm compared to a novel differential evolution and multi-saving and distance perception,the node average energyefficiency OMST algorithms are increasing by16.7%,and6.4%,the net number of surviving nodes are increasing by24.1%and13.7%.
作者 郑淼 郑成增 ZHENG Miao;ZHENG Chengzeng(Network and Educational Technology Center, Changzhou Institute of Technology, Changzhou, Jiangsu 213000, China;School of Computer Information & Engineering, Changzhou Institute of Technology, Changzhou, Jiangsu 213000, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第15期106-110,265,共6页 Computer Engineering and Applications
关键词 无线传感器网络 能量优化 粒子寻优 最小生成树聚类规则 wireless sensor network energy optimization particle optimization minimum spanning tree clustering rules
  • 相关文献

参考文献4

二级参考文献50

  • 1梁华为,陈万明,李帅,梅涛,孟庆虎.一种无线传感器网络蚁群优化路由算法[J].传感技术学报,2007,20(11):2450-2455. 被引量:32
  • 2陈贵海,李成法,叶懋,吴杰.EECS:一种无线传感器网络中节能的聚类方案[J].计算机科学与探索,2007,1(2):170-179. 被引量:24
  • 3Du X, Lin E Maintaining differentiated coverage in heterogeneous sensor networks[J]. Eurasip J of Wireless Communications and Networking, 2005, 5(4): 565-572.
  • 4Tian D, Georganas N. Connectivity maintenance and coverage preservation in wireless sensor networks[J]. Ad Hoe Networks, 2005, 3(6): 744-761.
  • 5Sim K M. Ant colony optimization for routing and load-balancing[J]. IEEE Trans on Systems, Man, and Cybernetic: Part A, 2003, 33(5): 560-572.
  • 6Mohamed R, Fahmy S, Pandurangan G. Latency-sensitive power Control for wireless ad hoc networks[C]. Proc of the MSWiM 2005. Montreal: ACM Press, 2005: 31-38.
  • 7Vikas Kawadia, Kumar P R. Power control in Ad- hoc networks: Theory, architecture, algorithm and implementation of the Compow protocol[C]. The 22nd Annual Joint Conf of the IEEE Computer and Communications. California: IEEE Societies, 2003: 459-469.
  • 8Marco Dorigo, Thomas Stutzle. Ant colony optimization[M]. Cambridge: The MIT Press, 2006: 71-83.
  • 9Liu B, Towsley D. A study of the coverage of large-scale sensor networks[C]. Proc of IEEE Int'l Conf on Mobile Ad-hoc and Sensor Systems. Chicago, 2004: 475-483.
  • 10Shu T, Krunz M. Joint power/rate optimization for CDMA- based wireless sensor networks[C]. Proc of SenMetrics 2005 -- The 3rd Int Work-Shop on Measurement, Modelling, and Performance Analysis of Wireless Sensor Networks. San Diego, 2005:106-115.

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部