期刊文献+

一种基于中心极大团扩展的社区挖掘算法

Community mining algorithm based on central maximal-clique expansion
下载PDF
导出
摘要 社区挖掘是复杂网络分析中的一项重要工作,目前已提出多种社区挖掘算法,但多数算法是通过节点间的连接关系来发现内聚的社区结构。结合真实网络中的节点具有不同的行为和影响力,在充分考虑网络中节点的连接关系的基础上,提出一种基于中心极大团扩展的社区挖掘两阶段算法。第一阶段发现初始社区:首先找到网络中所有的内聚子团,然后找出k个分散、内聚且有影响力的中心极大团作为初始社区;第二阶段形成最终社区划分:对初始社区外节点,充分考虑不同邻居节点对其潜在的影响力,采用局部模块度扩展的方法将节点扩展到与其连接紧密的社区内。实验结果表明,该方法能够快速揭示出网络中的社区结构,相比FN算法,具有较高的准确度和模块度,相比GN算法,不需要预先知道社区个数。 Community mining is an important work in complex network analysis,and many algorithms have been proposed.However,most of them are based on the links to find the cohesive community structure.Taking the nodes that have differentbehaviors and influences in real-world networks into consideration,together with links between nodes,a two-stagecommunity mining algorithm based on central maximal-clique expansion is proposed.In the first stage,initial communitiesare found:Firstly,all the cohesive cliques are found out in the network,and then k separate cohesive and influentialcentral maximal-cliques are chosen to form initial communities.In the second stage,the final community division isdetected:For the nodes outside the initial communities,taking potential impacts of neighbor nodes into consideration,theneighbor nodes are expanded to the corresponding connected closely community by adopting the local modularity.Experimental results show that the method can quickly reveal cohesive community structure in network,compared withthe FN algorithm it has a relatively higher accuracy and modularity,compared with the GN algorithm,it do not need toknow the prior number of communities.
作者 赵卫绩 张凤斌 刘井莲 金昊 ZHAO Weiji;ZHANG Fengbin;LIU Jinglian;JIN Hao(School of Information Engineering, Suihua University, Suihua, Heilongjiang 152061, China;School of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第15期164-169,238,共7页 Computer Engineering and Applications
基金 黑龙江省大学生创新创业训练计划项目(No.201610236014) 国家自然科学基金(No.61172168)
关键词 社区结构 中心极大团 局部模块度 community structure central maximal-clique local modularity
  • 相关文献

参考文献8

二级参考文献276

  • 1赵卓翔,王轶彤,田家堂,周泽学.社会网络中基于标签传播的社区发现新算法[J].计算机研究与发展,2011,48(S3):8-15. 被引量:37
  • 2Zhang Tian,Ramakrishnan R,Livny M.Birch:A New Data Clustering Algorithm and Its Applications.Data Mining and Knowledge Discovery,1997,1(2):141-182.
  • 3MacQueen J.Some Methods for Classification and Analysis of Multivariate Observations//Proc of the 5th Berkeley Symposium on Mathematical Statistics and Probability.Berkeley,USA,1967,Ⅰ:281-297.
  • 4Ester M,Riegel H P,Sander J,et al.A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise//Proc of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland,USA,1996:291-316.
  • 5Ding C,He Xiaofei.k-Nearest-Neighbor Consistency in Data Clustering:Incorporating Local Information into Global Optimization//Proc of the ACM Symposium on Applied Computing.Nicosia,Cy-prus,2004:584-589.
  • 6Fr(a)nti P,Virmajoki O,Hautam(a)ki V.Fast Agglomerative Clustering Using a k-Nearest Neighbor Graph.IEEE Trans on Pattern Analysis and Machine Intelligence,2006,28(11):1875-1881.
  • 7Zhu Qiaoming,Li Jnnhui,Zhou Guedong,et al.A Novel Hierarchical Document Clustering Algorithm Based on a kNN Connection Graph//Proc of the 21st International Conference on the Computer Processing of Oriental Languages.Singapore,Singapore,2006:120-130.
  • 8Teng S H,Yao F F.k-Nearest-Neighbor Clustering and Percolation Theory.Algorithmica,2007,49(3):192-211.
  • 9刘大有,刘杰,金弟.基于k最近邻划分的聚类算法研究//中国人工智能进展2007.哈尔滨,2007:169-174.
  • 10Luxburg U V.A Tutorial on Spectral Clustering.Statistics and Computing,2007,17(4):395-416.

共引文献187

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部