期刊文献+

含间隙机械碰撞振动系统的动力学分析 被引量:2

Nonlinear Dynamic Analysis of a Three-Degree-of-Freedom Vibro-Impact System
下载PDF
导出
摘要 首先建立了一类三自由度碰振系统的理论模型,利用模态矩阵法推导出系统周期运动的周期解及系统在不动点处Poincaré映射的雅克比矩阵;再通过碰振系统的边界条件,分析系统周期运动的稳定性;最后通过MATLAB进行数值仿真,根据Poincaré截面图揭示了系统由分岔通向混沌的道路,为机械系统的优化设计提供了理论参考。 The model of a three-degree-of-freedom vibro-impact system is established,The periodic solution ofthe periodic motion and the Jacobian matrix of the Poincarémap at the fixed point are deduced by the modalmatrix method.Through analysis the boundary conditions of the system’s periodic motion,solves the systemperiodic motion by analytic solution.The numerical simulations reveals that the bifurcation route to chaos.
作者 高梦亭 GAO Mengting(School of Mechanical and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)
出处 《机械》 2017年第7期24-26,61,共4页 Machinery
关键词 碰振系统 周期运动 分岔 混沌 vibro-impact periodic motion bifurcation chaos
  • 相关文献

参考文献2

二级参考文献13

  • 1胡海岩.分段光滑机械系统动力学的进展[J].振动工程学报,1995,8(4):331-341. 被引量:34
  • 2Knudsen J, Massih A R. Dynamic stability of weakly damped oscillators with elastic impacts and wear[J].Journal of Sound and Vibration, 2003, 263: 175-204.
  • 3Xu L, Lu M W, Cao Q J. Bifurcation and chaos of a harmonically excited oscillator with both stiffness and viscous damping piecewise linearities by incremental harmonic balance method[J]. Journal of Sound and Vibration, 2003, 264: 873-882.
  • 4Xu L, Lu M W, Cao Q J. Nonlinear vibrations of dynamical systems with a general form of piecewise-linear viscous damping by incremental harmonic balance method[J]. Physics Letters A, 2002,301: 65-73.
  • 5Hu H Y. Detection of grazing orbits and incident bifurcations of a forced continuous piecewise-linear oscillator[J]. Journal of Sound and Vibration, 1994,187(3): 485-493.
  • 6Whiston G S. Singularities in vibro-impact dynamics[J].Journal of Sound and Vibration, 1992, 152(3): 427-460.
  • 7Hu H Y. Controlling chaos of a periodically forced nonsmooth mechanical system[J]. Acta Mechanica Sinica, 1995, 11(3): 251-258.
  • 8Cao Q-J, Xu L, Djidjeli K. Analysis of period-doubling and chaos of a non-dymmetric oscillator with piecewise-linearity[J]. Chaos, Solitons and Fractals, 2001, 12:1917-1927.
  • 9Mahfouz I A, Badrakhan F. Chaotic behaviour of some piece-linear systems, part Ⅰ: systems with set-up spring or with unsymmetric elasticity[J]. Journal of Sound and Vibration, 1990, 143(2): 255-288.
  • 10Mahfouz I A, Badrakhan F. Chaotic behaviour of some piece-linear systems, part Ⅱ: systems with clearance[J].Journal of Sound and Vibration, 1990, 143(2): 289-328.

共引文献20

同被引文献11

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部