期刊文献+

基于压缩感知的感兴趣区域编码 被引量:3

Region of Interest Coding Based on Compressed Sensing
下载PDF
导出
摘要 受无线信道带宽的约束,图像经传统图像压缩方法压缩并经无线信道传输后,图像质量受损严重,会影响后续探测识别结果的准确性,本文针对这个问题提出一种基于压缩感知(Compressed Sensing,CS)的感兴趣区域(Region Of Interest,ROI)图像压缩方法。首先,将位平面位移技术引入压缩感知,对获得的图像进行量化、位平面分解;然后位移ROI位平面,并给出编码方案;最后,在解码端通过解码、重构,得到ROI质量良好的重构图像。仿真结果表明,本文算法重构图像的ROI部分PSNR高于传统的压缩感知编码方法,验证了方法的可行性和有效性,从而为ROI图像编码提供了一种可行的解决方案。 In order to solve the conflict between the requirement for high image quality for detection and recognition task and the constraint of wireless channel bandwidth,the paper proposes a ROI(Region of Interest)coding algorithm based on compressed sensing.Compressed sensing is employed to compress images due to its excellent anti-interference capability,and bit plane scaling technology is introduced into it.First,the blocked compressed sensing signals are quantified and decomposed to bit planes.Then,the bit planes of the region of interest are shifted.Finally after decoding,the high-quality reconstructed ROI image is achieved.Experimental results indicate that the PSNR of the reconstructed ROI part encoded through the bit plane shifting algorithm is higher than that through the traditional compressed sensing coding technology.Therefore the ROI coding algorithm based on compressed sensing can improve the efficiency of the wireless image transmission system,and meet the requirements of target detection and identification better.
作者 杜梅 曹蔚然 赵怀慈 DU Mei;CAO Weiran;ZHAO Huaici(Software Institute ,Shenyang Normal University ,Shenyang 110034,China;Shenyang Institute of Automation ,Chinese Academy of Science ,Shenyang 110016,China)
出处 《软件工程》 2017年第6期15-16,14,共3页 Software Engineering
基金 沈阳师范大学科研基金(L201516) 辽宁省自然科学基金项目(2013010420-401)
关键词 感兴趣区域 压缩感知 位平面位移 探测识别 ROI(Region Of Interest) compressed sensing bit plane shifting detection and identification
  • 相关文献

参考文献1

二级参考文献18

  • 1JPEG2000 image compression standardEEB/OL:, http:// www. jpeg. org/jpegZOOO/index, html. ,2000-LZ-25.
  • 2Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006,52(4) : 1289-1306.
  • 3Cand6s E J, Tao T. Near optimal signal recovery from random projections: Universal encoding strategies [ J] IEEE Transactions on Information Theory, 2006,52 (12) : 5406-5425.
  • 4Candes E J, Romberg J,Tao T. Robust uncertainty princi- pies: Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Informa- tion Theory,2006,52(2) :489-509.
  • 5DU Mei, ZHAO Huai-ci, ZHAO Chun-yang, et al. An anti-in- terfering reconstruction algorithm based on compressed sensingi-A:. Proc. of 3rd International Conference on E- lectric and ElectronicsEC:. 2013,441-445.
  • 6Mun S, Fowler J El Block compressed sensing of images using directional transformsEA:. Proc. of the Int. Conf. on Image Processing[C:. 2009,12 : 3021-3024.
  • 7Fowler J E, Mun S, Tramel E W. Multiscale block com- pressed sensing with smoothed projected landweber re- construction[C:. Proc. of 19th European Signal Process- ing ConferenceEC:, 2011,8:564-568.
  • 8Wang H T,Ghosh S,Leon-Salas W D. Compressive sens- ing recovery from non-ideally quantized measurements EA:. Proc. of the Int. Symp. on Circuits and SystemsEC:. 2013,1368-1371.
  • 9Mun S, Fowler J E. DPCM for quantized block-basedcompressed sensing of images:A]. Proc. of the Euro. Signal ProcessEC]. 2012,8 = 1424-1428.
  • 10Eslami R, Radha H. Wavelet-based contourlet coding u- sing an SPIHT-like algorithm:A]. Proc. of Conference on Information Sciences and Systems:C]. 2004,784-788.

共引文献1

同被引文献36

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部