摘要
互联网时代,信息交流频繁,不良违法信息的传播也日趋严重。在此情况下,识别和过滤富媒体不良信息变得尤为重要。近年来,深度学习等人工智能技术的崛起极大地推动了图像识别领域的发展,相较于传统方法,深度学习的优势在于自动提取且具有更强大的表达能力。基于此,本文提出了一种基于深度学习的不良富媒体信息管控方案,达到净化互联网内容的目的。
In the internet era,as people communicating and data exchanging frequently,the spread of malicious information is becoming more and more serious.Therefore,it is particularly important to identify and filter spam(text,image,video)on the internet.In recent years,the appearance of deep learning has greatly pushed forward the frontier of computer vision research,and computer vision tasks like image classification and recognition have greatly benefited from it.Compared with traditional methods,the features automatically extracted by deep model have better representing power.In this paper,we propose a rich media information detection method based on the deep learning.As a result,it achieves the purpose of fi ltering internet content.
作者
郦荣
LI Rong(China Mobile (Hangzhou) Information Technology Co., Ltd./ China Mobile Hangzhou R & D Center, Hangzhou 310000, China)
出处
《电信工程技术与标准化》
2017年第8期1-6,共6页
Telecom Engineering Technics and Standardization
关键词
高并发
富媒体
深度学习
卷积神经网络
high concurrency
conrich media information
deep learning
convolutional neural network