期刊文献+

Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay 被引量:9

Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay
下载PDF
导出
摘要 Boom Clay is one of the potential host rocks for deep geological disposal of high-level radioactive nuclear waste in Belgium. In order to investigate the mechanism of hydraulic conductivity variation under complex thermo-mechanical coupling conditions and to better understand the thermo-hydromechanical(THM) coupling behaviour of Boom Clay, a series of permeability tests using temperaturecontrolled triaxial cell has been carried out on the Boom Clay samples taken from Belgian underground research laboratory(URL) HADES. Due to its sedimentary nature, Boom Clay presents acrossanisotropy with respect to its sub-horizontal bedding plane. Direct measurements of the vertical(Kv)and horizontal(Kh)hydraulic conductivities show that the hydraulic conductivity at 80℃ is about 2.4 times larger than that at room temperature(23℃), and the hydraulic conductivity variation with temperature is basically reversible during heatingecooling cycle. The anisotropic property of Boom Clay is studied by scanning electron microscope(SEM) tests, which highlight the transversely isotropic characteristics of intact Boom Clay. It is shown that the sub-horizontal bedding feature accounts for the horizontal permeability higher than the vertical one. The measured increment in hydraulic conductivity with temperature is lower than the calculated one when merely considering the changes in water kinematic viscosity and density with temperature. The nuclear magnetic resonance(NMR) tests have also been carried out to investigate the impact of microstructure variation on the THM properties of clay. The results show that heating under unconstrained boundary condition will produce larger size of pores and weaken the microstructure. The discrepancy between the hydraulic conductivity experimentally measured and predicted(considering water viscosity and density changes with temperature) can be attributed to the microstructural weakening effect on the thermal volume change behaviour of Boom Clay. Based on the experimental results, a hydraulic conductivity evolution model is proposed and then implemented in ABAQUS. Three-dimensional(3D) numerical simulation of the admissible thermal loading for argillaceous storage(ATLAS) Ⅲ in situ heating test has been conducted subsequently, and the numerical results are in good agreement with field measurements. Boom Clay is one of the potential host rocks for deep geological disposal of high-level radioactive nuclear waste in Belgium. In order to investigate the mechanism of hydraulic conductivity variation under complex thermo-mechanical coupling conditions and to better understand the thermo-hydromechanical(THM) coupling behaviour of Boom Clay, a series of permeability tests using temperaturecontrolled triaxial cell has been carried out on the Boom Clay samples taken from Belgian underground research laboratory(URL) HADES. Due to its sedimentary nature, Boom Clay presents acrossanisotropy with respect to its sub-horizontal bedding plane. Direct measurements of the vertical(Kv)and horizontal(Kh)hydraulic conductivities show that the hydraulic conductivity at 80℃ is about 2.4 times larger than that at room temperature(23℃), and the hydraulic conductivity variation with temperature is basically reversible during heatingecooling cycle. The anisotropic property of Boom Clay is studied by scanning electron microscope(SEM) tests, which highlight the transversely isotropic characteristics of intact Boom Clay. It is shown that the sub-horizontal bedding feature accounts for the horizontal permeability higher than the vertical one. The measured increment in hydraulic conductivity with temperature is lower than the calculated one when merely considering the changes in water kinematic viscosity and density with temperature. The nuclear magnetic resonance(NMR) tests have also been carried out to investigate the impact of microstructure variation on the THM properties of clay. The results show that heating under unconstrained boundary condition will produce larger size of pores and weaken the microstructure. The discrepancy between the hydraulic conductivity experimentally measured and predicted(considering water viscosity and density changes with temperature) can be attributed to the microstructural weakening effect on the thermal volume change behaviour of Boom Clay. Based on the experimental results, a hydraulic conductivity evolution model is proposed and then implemented in ABAQUS. Three-dimensional(3D) numerical simulation of the admissible thermal loading for argillaceous storage(ATLAS) Ⅲ in situ heating test has been conducted subsequently, and the numerical results are in good agreement with field measurements.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第3期1-13,共13页 岩石力学与岩土工程学报(英文版)
基金 financial support of the National Science Foundation for Distinguished Young Scholars (Grant No. 51225902) Natural Science Foundation of China (Grant No. 51479190) EURIDICE (European Underground Research Infrastructure for Disposal of Nuclear Waste in Clay Environment, Mol, Belgium) for the work presented in this paper
关键词 Boom Clay PERMEABILITY Thermal effect ANISOTROPY MICROSTRUCTURE Boom Clay Permeability Thermal effect Anisotropy Microstructure
  • 相关文献

同被引文献129

引证文献9

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部