期刊文献+

支持复杂社会网络演化的过程挖掘技术综述 被引量:3

Survey on process mining in complex evolving social networks
下载PDF
导出
摘要 复杂社会网络演化过程研究对于发现社会网络群体的隐含结构和演化规律,以及风险预测具有重要意义。首先梳理了过程挖掘技术的发展脉络,阐述复杂社会网络分析方法与过程挖掘技术相结合在复杂社会网络演化模式研究、组织结构发现中的应用现状,结合社会网络分析方法和大数据技术,运用服务工程思想,进而从社会和资源维度综述社会网络跨组织业务过程发现、动态社会网络演化过程发现、角色挖掘与服务挖掘等技术,指出现有复杂社会网络过程挖掘研究面对大数据质量和跨组织异构等研究方面的不足,对大规模社会网络过程挖掘领域的研究难点和发展趋势进行了讨论。 Research on complex evolving social networks is fundamentally important for discovering potential structure and evolving principle of social networks community,and risk prediction.First,this paper surveys the state of the art of process mining,and analyzes the status of complex social network evolving pattern and organization discovery based on social networks analysis and process mining technology.Then,big-data technology and service engineering are used to explain process mining of social network inter-organization,evolving of social networks,role mining and service mining,from the perspective of social and resource.In addition,some defects are pointed out on quality of big data and heterogeneous in inter-organization.Finally,some challenges and potential future researches are discussed.
作者 黄黎 谭文安 HUANG Li;TAN Wen-an(School of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;School of Information and Electromechanical Engineering, Jiangsu Open University, Nanjing 210017, China;School of Computer and Information Engineering, Shanghai Second Polytechnic University, Shanghai 210209, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第16期18-28,49,共12页 Computer Engineering and Applications
基金 国家自然科学基金(No.61672022) 江苏省高校自然科学基金(No.15KJB520005)
关键词 社会网络 网络演化 过程挖掘 服务挖掘 social networks network evolution process mining service mining
  • 相关文献

参考文献8

二级参考文献118

  • 1张伟哲,张鸿,刘欣然,陈琳,李东.基于语料阶梯评价的互联网论坛舆论领袖筛选算法[J].计算机研究与发展,2012,49(S2):145-152. 被引量:1
  • 2韩忠明,许峰敏,段大高.面向微博的概率图水军识别模型[J].计算机研究与发展,2013,50(S2):180-186. 被引量:10
  • 3ZHOU Tao,FU Zhongqian,WANG Binghong.Epidemic dynamics on complex networks[J].Progress in Natural Science:Materials International,2006,16(5):452-457. 被引量:36
  • 4李嘉菲,刘大有,杨博.过程挖掘中一种能发现重复任务的扩展α算法[J].计算机学报,2007,30(8):1436-1445. 被引量:20
  • 5van der Aalst W M P,Weijters T,Maruster L.Workflow Mining:Dis-covering Process Models from Event Logs[J].IEEE Trans.Knowl.Data Eng,2004,16(9):1128-1142.
  • 6van der Aalst W M P.Process Discovery:Capturing the Invisible[J].IEEE Computational Intelligence Magazine,2010,5(1):28-41.
  • 7van der Aalst W M P.Process Mining:Discovery.Conformance andEnhancement of Business Processes[M].Springer,2011.
  • 8Cook J E,Wolf A L.Discovering Models of Software Processes from E-vent-Based Data[J].ACM Transactions on Software Engineering andMethodology,1998,7(3):215-249.
  • 9Agrawal R,Gunopulos D,Leymann F.Mining Process Models fromWorkflow Logs[C] //Proc.of the 6th International Conference on Ex-tending Database Technology,1998:469-483.
  • 10Herbst J,Karagiannis D.Integrating Machine Learning and WorkflowManagement to Support Acquisition and Adaptation of Workflow Models[C] //Proc.of the 9th International Workshop on Database and ExpertSystems Applications(DEXA'98),1998:745-752.

共引文献254

同被引文献64

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部