摘要
传统K-means算法除了对初始聚类中心的选择非常敏感,易收敛到局部最优解外,还存在着K值难以确定的问题,不合适的K值往往会得到较差的聚类结果。而K值问题也是聚类分析中的一个重要的研究方向,在粒子群聚类算法的基础上,结合K-means算法,提出了自适应K值的粒子群聚类算法。当算法收敛时,可通过比较不同K值时全局最优适应度值之间的关系来决定K值的增大与减小。实验表明改进的算法可以有效指导K值的选取,并且具有较好的聚类效果。
Traditional K-means algorithm is not only sensitive to the choice of initial clustering center and is easy to converge to the local optimal solution,but also has the problem of determining the value of K:inappropriate K values often lead to poor clustering results.The K value problem is an important research direction of clustering analysis,on the basis of particle clustering algorithm,combining the K-means algorithm,this paper proposes the particle swarm optimization clustering algorithm with adaptive K values.When the algorithm convergence,by comparing the relationship between different values of global optimal fitness under different K values,the increase or decrease of K values can be detemined.Experiments show that the improved algorithm can guide the selection of K values,and has a better clustering effect.
作者
白树仁
陈龙
BAI Shuren;CHEN Long(The National Supercomputing Center in Changsha, Hunan University, Changsha 410006, China;College of Information Science and Engineering, Hunan University, Changsha 410006, China)
出处
《计算机工程与应用》
CSCD
北大核心
2017年第16期116-120,共5页
Computer Engineering and Applications
基金
国家科技支撑计划课题项目(No.2012BAH09B02)
长沙市重点科技计划项目(No.K1306004-11-1
No.K1204006-11-1
No.K1112001-11)
湖南省重点研发计划项目(No.2015SK2087)
关键词
粒子群聚类算法
K-MEANS算法
自适应K值
收敛
particle swarm optimization algorithm
K-means algorithm
self-adaptive K values
convergence