期刊文献+

POKD-tree:一种有效的SIFT图像特征点匹配方法 被引量:3

POKD-tree:an effective SIFT image feature point matching method
下载PDF
导出
摘要 为解决SIFT算法计算复杂,且算法效率不高的问题,提出了POKD-tree算法(分区优化kd树搜索算法)。首先,利用SIFT算法提取图像的特征点,以图像特征点集在X和Y方向中跨度最大的方向为分区直线的方向,计算图像特征点集的质心,用通过质心的分区直线来进行图像分区;采用欧式距离对图像进行特征点匹配,首先进行对应搜索匹配,同时为了解决分区误差,在进行对应搜索之后再进行交叉搜索。通过实验证明,POKD-tree算法在匹配的效率上要优于BBF算法和RKD-tree算法。 In order to solve the SIFT algorithm,and the algorithm efficiency is not high,POKD-tree algorithm(partition optimization KD tree search algorithm)is proposed.Firstly,image feature points are extracted using SIFT algorithm,the largest span direction in the image feature point set in X and Y direction is the partition line direction,and calculate the centroid of image features point set,through the partition to partition the image centroid line;using Euclidean distance between feature points in image matching,the first corresponding match,at the same time in order to solve the partition error,then cross search after the corresponding search.Finally,the experimental results show that POKD-tree algorithm is superior to BBF algorithm and RKD-tree algorithm in matching efficiency.
作者 董本志 龙建勇 景维鹏 DONG Benzhi;LONG Jianyong;JING Weipeng(College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第16期182-186,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.31370565 No.61300098) 哈尔滨市人才项目专项(No.2015RAYXJ005)
关键词 POKD-tree算法 分区直线 对应搜索 交叉搜索 匹配效率 POKD-tree algorithm partition line corresponding match cross search matching efficiency
  • 相关文献

参考文献6

二级参考文献57

  • 1赵文彬,张艳宁.角点检测技术综述[J].计算机应用研究,2006,23(10):17-19. 被引量:85
  • 2张小洪,李博,杨丹.一种新的Harris多尺度角点检测[J].电子与信息学报,2007,29(7):1735-1738. 被引量:79
  • 3徐劫.面向高精度遥感图像的匹配算法的研究与开发[D].杭州:浙江大学,2008.
  • 4Eberhart R C,Kennedy J.A new optimizer usmg particles swarm theory[C]//Proc Sixth International Symposium on Micro Machine and Human Science,Nagoya,Japan,1995.
  • 5Eberhat R C,Kennedy J.Particles swarm optimization[C]//IEEE In-ternational Conference on Neural Network,Perth,Australia,1995.
  • 6孙仲康 沈振康.数字图像处理及其应用[M].北京:国防工业出版社,1985..
  • 7Lowe D G.Object Recognition from Local Scale invariant Features[C]∥Proceeding of the Seventh IEEE International Conference on Computer Vision.Kerkyra,Greece,1999:1150-1157.
  • 8Lowe D G.Distinctive Image Features from Scale invariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 9Ke Y,Sukthankar R.PCA—SIFT:a More Distinctive Representation for Local Image Descriptors[C]∥Proceedings of the Conference on Computer Vision and Pattern Recognition.Washington,USA,2004:511-517.
  • 10Umeyama S.Least-squares estimation of transformation para-meters between two point patterns[J].IEEE Trans.Pattern Anal.Mach.Intell.,1991,13(4):376-380.

共引文献34

同被引文献16

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部