期刊文献+

TP RAM的低功耗优化设计及应用

Low power optimization of TP RAM and application
下载PDF
导出
摘要 针对SoC中TP RAM的面积及功耗较大问题,提出一种优化设计方法。通过将SoC中的TP RAM替换成SP RAM,在SP RAM外围增加读写接口转换逻辑,使替换后的RAM实现原TP RAM的功能,保持对外接口不变。为了进一步降低功耗,使用自适应门控时钟,对地址总线进行格雷编码。将文中方法应用于一款多核SoC芯片,该芯片经TSMC 28 nm HPC工艺成功流片,die size为10.5 mm×11.3 mm,功耗为17.07 W。测试结果表明,优化后的RAM面积减少了25.2%,功耗降低了43.07%。 As the area and power consumption of TP RAM in SoC are large,a new design method of optimization is proposed.In order to achieve the function of the original TP RAM and keep the external interface unchanged,TP RAM is replaced with SP RAM,and read-write interface logics of conversion are added around SP RAM.For less power,adaptive clock-gating is used and address bus is encoded through Gray code.The method discussed in this paper is used in the multi core SoC chip which has been successfully taped out in TSMC28nm HPC process.The chip occupies10.5mm×11.3mm of die area and consumes17.07W.The testing results indicate that the area of optimized RAMs is reduced by25.2%,and the power saving is43.07%.
作者 周清军 刘红侠 ZHOU Qingjun;LIU Hongxia(ZTE Telecom College, Xi’an Peihua University, Xi’an 710125, China;Key Lab of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, Xidian University, Xi’an 710071, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第16期237-240,257,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61376099 No.6143000024) 陕西省教育厅专项基金项目(No.16JK2138)
关键词 伪双口随机存储器(TPRAM) 单口随机存储器(SPRAM) 接口转换逻辑 自适应门控时钟 格雷码 Two Ports Random Access Memory(TP RAM) Single Port Random Access Memory(SP RAM) interface logics of conversion adaptive clock-gating Gray code
  • 相关文献

参考文献8

二级参考文献70

  • 1蒋湘涛,胡志刚,贺建飚.基于调用链分析的低功耗编译优化[J].吉林大学学报(工学版),2009,39(1):143-147. 被引量:6
  • 2胡瑜,韩银和,李晓维.SOC可测试性设计与测试技术[J].计算机研究与发展,2005,42(1):153-162. 被引量:42
  • 3Wang Pengjun,Chen Xiexiong.TABULAR TECHNIQUES FOR OR-COINCIDENCE LOGIC[J].Journal of Electronics(China),2006,23(2):269-273. 被引量:11
  • 4Lutkemeier S, Jungeblut T, Berge H K O, et al. A 65 nm 32 b subthreshold processor with 9T multi-Vt SRAM and adaptive supply voltage control [J]. IEEE Journal of Solid-State Circuits, 2013, 48(1): 8-19.
  • 5Makosiej A, Thomas O, Vladimirescu A, et al. Stability and yield-oriented ultra-low-power embedded 6T SRAM cell design optimization [C]//Design, Automation & Test in Europe Conference & Exhibition. Dresden, Germany, 2012: 93-98.
  • 6Tu Ming-Hsien, Lin Jihi-Yu, Tsai Ming-Chien, et al. A single-ended disturb-free 9T subthreshold SRAM with cross-point data-aware write word-line structure, negative bit-line, and adaptive read operation timing tracing [J]. IEEE Journal of Solid-State Circuits, 2012, 47(6): 1469-1482.
  • 7Eid S T, Whately M, Krishnegowda S. A microcontroller-based PVT control system for a 65nm 72Mb synchronous SRAM [C]//2010 IEEE International Solid-State Circuits Conference Digest of Technical Papers. San Jose, CA, USA, 2010: 184-185.
  • 8Chen Jinhui, Clark L T, Chen Tai-Hua. An ultra-low-power memory with a subthreshold power supply voltage [J]. IEEE Journal of Solid-State Circuits, 2006, 41(10): 2344-2353.
  • 9Lakshminarayanan S, Joung J, Narasimhan G, et al. Standby power reduction and SRAM cell optimization for 65nm technology [C]//Quality of Electronic Design. Kuala Lumpur, Malaysia, 2009: 471-475.
  • 10Chang I J, Kim J J, Park S P, et al. A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS [J]. IEEE Journal of Solid-State Circuits, 2009, 44(2): 650-658.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部