期刊文献+

基于长短时记忆网络的旋转机械状态预测研究 被引量:28

State Prognosis of Rotary Machines Based on Long/Short Term Memory Recurrent Neural Network
下载PDF
导出
摘要 作为深度学习算法的一种,长短时记忆网络越来越成为时间序列预测的重要手段,简要阐述长短时记忆网络的基本原理,并将其应用于旋转机械状态监控领域,以轴承数据为样本进行仿真,针对轴承数据的非平稳性,运用经验模态分解方法将其分解为平稳信号,并计算其本征模态分量能量熵作为状态特征,通过计算长短时记忆网络对旋转机械状态单步预测的结果,并与支持向量回归机模型的预测结果进行比较,证明长短时记忆网络在旋转机械状态预测方面可以取得比支持向量回归机更好的效果。 As a method of deep learning algorithm,long/short term memory network(LSTM)has been playing an increasingly important role in the field of time series prediction.In this paper,a new method for state prediction of rotary machines based LSTM is proposed.And the principle of LSTM applied to rotary machine state monitoring and prognosis is introduced and applied to state monitoring of the rotary machinery.In order to avoid the instability of the bearing data,the empirical mode decomposition(EMD)is used to decompose the bearing data into several steady signals,and the intrinsic mode function(IMF)energy entropy is calculated as the feature of the machine state.Furthermore the analysis of simulation results based on LSTM is compared with those of support vector regression machine(SVRM).LSTM has achieved a stateof-the-art prediction performance in the single-step prediction of rotary machine states.It is shown that the proposed prognosis technology is superior in rotary machine state prediction and monitoring.
作者 赵建鹏 周俊 ZHAO Jian-peng;ZHOU Jun(School of Mechanical Engineering, Shanghai University of Engineering Science,Shanghai 201620, China)
出处 《噪声与振动控制》 CSCD 2017年第4期155-159,共5页 Noise and Vibration Control
基金 教育部留学回国人员科研启动基金资助项目(教外司留[2012]940号)
关键词 振动与波 长短时记忆 故障预测 状态监控 经验模态分解 能量熵 vibration and wave LSTM fault prognosis state monitoring EMD energy entropy
  • 相关文献

参考文献2

二级参考文献17

  • 1王红军,张建民,徐小力.基于支持向量机的机械系统状态组合预测模型研究[J].振动工程学报,2006,19(2):242-245. 被引量:17
  • 2侯澍旻,李友荣,刘光临.基于支持向量机的设备振动信号趋势预测[J].湖北工业大学学报,2006,21(3):12-14. 被引量:4
  • 3董辉,傅鹤林,冷伍明.支持向量机的时间序列回归与预测[J].系统仿真学报,2006,18(7):1785-1788. 被引量:63
  • 4胡寿松,张正道.基于神经网络的非线性时间序列故障预报[J].自动化学报,2007,33(7):744-748. 被引量:16
  • 5YANG Bo-suk, Widodo Achmad. Support vector machine for machine fault diagnosis and prognosis[J]. Jotmlnl of Sytacm Dotn trod Dynamics, 2008, 2 (1): 12-23.
  • 6Vapnik V N. Statistical learning theory[M]. New York: John Wiley & Sons, 1998: 10-40.
  • 7Venkat R. Nadadoor, Hector De la Hoz Siegler, Stash L Shah, William C Mc Caffrey, Amos Ben-Zvi. Online sensor for monitoring a microalgal bioreactor system using support vector regression[J]. Chaomoltiea and l:olligaat Laboratory Syatoms, 2012 (110): 38-48.
  • 8Sancho Salcedo-Sanz, Emilio G. Ortiz-Garcia, mgel M. P6rez-Bellido, Antonio Portilla-Figueras,Luis Prieto. Short term wind speed prediction based on evolutionary support vector regression algorithms[J]. Systems with Appfie, mioaa, 2011(38): 4052-4057.
  • 9HOU Shu- rain, LI You- rong. Short- term fault prediction based on support vector machines with parameter.optimization by evolution strategy[J]. Expert Syattm withAllie, a, tiona, 2009 (36): 12383-12391.
  • 10HUANG Ji, BO Yu-cheng, WANG Hui-yuan. Electromechanical equipment state forecasting based on genetic algorithm-support vector regression[J]. Systems with Allictlio, 2011 (38): 8399-8402.

共引文献11

同被引文献223

引证文献28

二级引证文献319

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部