期刊文献+

基于MDS和神经网络的滚动轴承故障诊断方法 被引量:5

Rolling Bearing Fault Diagnosis Method Based on MDS and Neural Network
下载PDF
导出
摘要 针对滚动轴承的智能诊断问题,提出基于多维尺度分析(Multidimensional Scaling,简称MDS)和神经网络的滚动轴承故障诊断方法。该方法首先提取原始信号常用的时域统计指标,再将包含故障信息的统计指标进行MDS降维处理,减少后续模式识别难度,最后将降维后的统计指标作为神经网络的输入参数来判断滚动轴承的故障类型。对滚动轴承正常状态、滚动体故障、外圈故障和内圈故障四种模式下的振动信号进行分析,结果表明,运用MDS进行降维预处理的神经网络故障诊断方法比没有经过预处理的故障诊断方法有更高的故障识别效率,可以准确有效识别滚动轴承的故障类型。 A new fault diagnosis method for rolling bearings based on Multidimensional Scaling(MDS)and neural network is put forward.First of all,several time-domain statistics indexes of rolling bearings are extracted from original signals.Then,the indexes containing fault information are processed by MDS to reduce the data dimension.Finally,the low dimensional characteristic indexes are served as input parameters of neural network to identify fault patterns of the rolling bearings.The analysis results from rolling bearing signals with rolling element,inner-race and out-race faults show that the approach of neural network diagnosis based on MDS is superior to that without MDS and can identify roller’s fault patterns effectively.
作者 马朝永 黄攀 胥永刚 付胜 MA Chao-yong;HUANG Pan;XU Yong-gang;FU Sheng
出处 《噪声与振动控制》 CSCD 2017年第4期171-174,共4页 Noise and Vibration Control
基金 国家自然科学基金资助项目(51375020) 北京市优秀人才培养资助项目(2011D005015000006)
关键词 振动与波 滚动轴承 多维尺度分析 神经网络 故障诊断 vibration and wave rolling bearing multidimensional scaling neural network fault diagnosis
  • 相关文献

参考文献5

二级参考文献43

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2吴蒙,贡璧,何振亚.人工神经网络和机械故障诊断[J].振动工程学报,1993,6(2):153-163. 被引量:47
  • 3Baydar N, Ball A. Detection of gear failures via vibration and acoustics signals using wavelet transform [ J ]. Mechanical Systems and Signal Processing, 2003, 17(4) : 787 -804.
  • 4Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform[ J]. Mechanical Systems and Signal Processing, 2002, 16(2 -3) : 447 -457.
  • 5Classen T, Mecklenbrauker W. The aliasing problem in discrete-time Wigner distribution[ J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31 (5) : 1067 - 1072.
  • 6Lee J H, Kim J, Kim H J. Development of enhanced Wigner- Ville distribution function [ J ]. Mechanical Systems and Signal Processing, 2001, 13 (2) : 367 - 398.
  • 7Cohen L. Time-frequency distribution-a review [ A ]. Proceedings of the IEEE, 1989, 77(7) : 941 -981.
  • 8Mallat S. A theory for multi-resolution decomposition, the wavelet representation [ J]. IEEE Trans. P. A. M. I. , 1989, 11(7) :674 -689.
  • 9Huang N E, Shen Z, Long S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc. R. Soc. Lond. A, 1998, 454:903-995.
  • 10Huang N E, Shen Z, Long S R. A New View of Nonlinear Water Waves: The Hilbert Spectrum[J]. Annu. Rev. Fluid Mech. , 1999, 31:417 -457.

共引文献275

同被引文献39

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部