期刊文献+

Hamilton-Souplet-Zhang's gradient estimates for two weighted nonlinear parabolic equations 被引量:1

Hamilton-Souplet-Zhang's gradient estimates for two weighted nonlinear parabolic equations
下载PDF
导出
摘要 In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded below: One is $${u_t} = {\Delta _f}u + au\log u + bu$$ with a, b two real constants, and another is $${u_t} = {\Delta _f}u + \lambda {u^\alpha }$$ with λ, α two real constants. We obtain local Hamilton-Souplet-Zhang type gradient estimates for the above two nonlinear parabolic equations. In particular, our estimates do not depend on any assumption on f. In this paper, we consider gradient estimates for positive solutions to the following weighted nonlinear parabolic equations on a complete smooth metric measure space with only Bakry-Émery Ricci tensor bounded below: One is $${u_t} = {\Delta _f}u + au\log u + bu$$ with a, b two real constants, and another is $${u_t} = {\Delta _f}u + \lambda {u^\alpha }$$ with λ, α two real constants. We obtain local Hamilton-Souplet-Zhang type gradient estimates for the above two nonlinear parabolic equations. In particular, our estimates do not depend on any assumption on f.
出处 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2017年第3期353-364,共12页 高校应用数学学报(英文版)(B辑)
基金 Supported by NSFC(11371018,11401179,11671121)
关键词 Hamilton’s gradient estimate Souplet-Zhang’s gradient estimate weighted nonlinear parabolic equation Bakry-Émery Ricci tensor Hamilton’s gradient estimate Souplet-Zhang’s gradient estimate weighted nonlinear parabolic equation Bakry-Émery Ricci tensor
  • 相关文献

参考文献1

二级参考文献14

  • 1Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 34, 525-598 (1981).
  • 2Li, P., Yau, S. T.: On the parabolic kernel of the Schrodinger operator. Acta Math., 156, 153-201 (1986).
  • 3Li, J.: Graclient estimates and Harnack inequalities for nonlinear parabolic and nonlinear'elliptic equations on Riemannian manifolds. J. Funct Anal., 100, 233-256 (1991).
  • 4Negrin, E.: Gradient estimates and a Liouville type theorem for the Schrodinger operator. J. Funet. Anal., 127, 198-203 (1995).
  • 5Melas, A.: A Liouville type theorem for the Schrodinger operator. Proc. Amer. Math. Soc., 127, 3353-3359 (1999).
  • 6Asserda, S.: A Liouville theorem for the Schrodinger operator with drift. C. R. Acad. Sci. Paris, Ser. I, 342, 393 398 (2006).
  • 7Gui, C., Lin, F.: Regularity of an elliptic problem with a singular nonlinearity. Proc. Roy. Soc. Edinburgh, Sec. A, 123, 1021-1029 (1993).
  • 8Guo, Z., Wei, J.: Hausdoff dimension of ruptures for solutions of a semilinear equation with singular nonlinearity. Manuscripta Math., 120, 193-209 (2006).
  • 9Gilbarg, D,, Trudinger,- N.: Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001.
  • 10Yau, S. T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math., 28, 201-228 (1975).

共引文献7

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部