期刊文献+

社交媒体用户行为的时间模式隐私攻击方法

Method of attacking temporal pattern privacy of users' behavior in social media
下载PDF
导出
摘要 网络社交媒体用户个人隐私信息的保护具有极其重要的意义。现有的有关隐私保护的研究集中于一般关系型数据、位置和轨迹信息、社交网络关系等数据类型的隐私保护,而社交媒体数据结构的复杂性使得隐私泄露的情况变得更加隐蔽,现有针对其他类型数据的隐私泄露的判定方式和隐私保护方法难于直接用于社交媒体用户行为的时间模式分析。为了发现社交媒体复杂时间数据中存在的潜在隐私泄露问题,给出针对网络论坛用户的行为时间模式的隐私泄露挖掘方法,设计并实现了多方法、多选择的聚类攻击者模型,实验通过攻击社交媒体用户的行为模式数据集,发现了用户行为时间模式的特异性和网络论坛中广泛存在着的用户隐私泄露的问题,应当引起充分重视。 It’s of very much importance that personal privacy information of social media users on the Internet should be protected.Prevailing research outcomes protecting privacy are mainly about general relational data,location based service and related trace data,and social network structure,while recognition of privacy exposure problems and the solutions solving them remain to be discovered fortemporal data of users’behavior in social media.On the purpose of solving these problems,a multi-method and multi-option clustering based attacker model is proposed,and it’s capable of leaving social media users’temporal patterns to much privacy exposure,which deserves considerable attention.
作者 张泽文 张硕 曾剑平 ZHANG Zewen;ZHANG Shuo;ZENG Jianping(School of Computer Science, Fudan University, Shanghai 200433, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第17期14-19,142,共7页 Computer Engineering and Applications
基金 上海市自然科学基金(No.15ZR1403700) 国家自然科学基金(No.61073170)
关键词 用户行为 时间模式 聚类 社交媒体 隐私保护 users’behavior temporal pattern clustering social media privacy protection
  • 相关文献

参考文献5

二级参考文献32

  • 1彭京,唐常杰,程温泉,石葆梅,乔少杰.一种基于层次距离计算的聚类算法[J].计算机学报,2007,30(5):786-795. 被引量:11
  • 2Saygin Y,Verykios V S,Elmagarmid A K.Privacy preserving association rule mining[A].Proceedings of the 12th International Workshop on Research Issues in Data Engineering(RIDE)[C].San Jose,USA:IEEE Computer Society,2002.151-158.
  • 3Aggarwal C C,Yu P S.A condensation approach to privacy preserving data mining[A].Proceedings of the 9th International Conference on Extending Database Technology(EDBT)[C].Heraklion,Greece:Springer,2004.183-199.
  • 4Yao A C.How to generate and exchange secrets[A].Proceedings of the 27th IEEE Symposium on Foundations of Computer Science(FOCS)[C].Toronto,Canada:IEEE Press,1986.162-167.
  • 5Clifton C,Kantarcioglou M,Lin X,Zhu M Y.Tools for privacy preserving distributed data mining[J].ACM SIGKDD Explorations,2002,4(2):28-34.
  • 6Laszlo M,Mukherjee S.Minimum spanning tree partitioning algorithm for microaggregation[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(7):902-911.
  • 7Solanas A,Martinez-Balleste A,Domingo-Ferrer J,et al.A 2d-tree-based blocking method for microaggregating very large data sets[A].Proc of the First International Conference on Availability,Reliability and Security[C].Vienna,Australia:IEEE Press,2006.922-928.
  • 8Domingo-Ferrer J.Microaggregation for database and location privacy[A].Proc of Next Generation Information Technologies and Systems[C].Kibbutz,Shefayim,Israel:Springer-Verlag,2006.106-116.
  • 9Truta T,Vinay B.Privacy protection:p-sensitive k-anonymity property[A].Proc of the 22nd International Conference on Data Engineering Work Shops[C].Washington DC,USA:IEEE Computer Society,2006.94-103.
  • 10Sweeney L.k-anonymity:A model for protecting privacy[J].International Journal on Uncertainty,Fuzziness and Knowledge-Based Systems,2002,10(5):557-570.

共引文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部