期刊文献+

采用柯西分解降噪的目标跟踪方法

H-infinity filtering tracking method using Cauchy decomposition
下载PDF
导出
摘要 提升噪声干扰情况下的目标跟踪精度,提出了一种柯西分解改进的无迹H∞滤波方法。采用UT变换代替传统的泰勒级数线性近似截断处理,降低近似截断误差,提升处理非线性系统的能力;对目标状态的协方差矩阵均方根进行柯西分解,采用对角元素求解,降低了观测噪声的扰动误差对滤波估计精度的影响。仿真结果表明,所提方法明显提升了不同噪声统计特性情况下的跟踪精度和稳定性。 In order to promote the target tracking accuracy in noise circumstance,this paper proposes an improved unscented H-infinity filter method based on Cauchy decomposition.First of all,Unscented(UT)transform is used to replace the complex Jacobi matrix calculation within the framework of the extended H-infinity filtering.The method reduces the approximate truncation errors,and improves the ability to deal with nonlinear system.Second,this method adopts diagonal elements to decompose the root mean square of state covariance matrix.This decomposition method reduces the effect of observation noise variance to filtering estimation precision effectively.The simulation results show that the proposed method obviously improves the object tracking accuracy and stability in different noise statistical properties.
作者 程志辉 黄宇 CHENG Zhihui;HUANG Yu(School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China;Library Center, Hubei University of Technology, Wuhan 430068, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第17期41-46,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.51179197)
关键词 目标跟踪 噪声统计特性 无迹变换 柯西分解 H∞滤波 object tracking noise statistical properties unscented transform Cauchy decomposition H -infinity filtering
  • 相关文献

参考文献9

二级参考文献154

  • 1刘长河,刘世祥.范德蒙矩阵的三角分解[J].北京建筑工程学院学报,2005,21(1):39-43. 被引量:2
  • 2庄严,战洪斌,王伟,王珂.基于加权颜色直方图和粒子滤波的彩色物体跟踪[J].控制与决策,2006,21(8):868-872. 被引量:20
  • 3查宇飞,毕笃彦.一种基于粒子滤波的自适应运动目标跟踪方法[J].电子与信息学报,2007,29(1):92-95. 被引量:19
  • 4颜庆津.数值分析[M].北京:北京航空航天大学出版社,1995.243-276.
  • 5Grenander U,Chow Y,Keenan D M.A pattern theoretical study of biological Shapes[M].New York : Springer-Verlag, 1991.
  • 6Isard M,Blake A.CONDENSATION-conditional density propagation for visual tracking[J].International Journal of Computer Vision, 1998,29 (1):5-28.
  • 7Isard M,Blake A.ICONDENSATION:unifying low-level and high- level tracking in a stochastic framework[C]//European Conference on Computer Vision, 1998,1 : 893-908.
  • 8Nummiaro K,Koller-Meier E,van Gool L.An adaptive color based particle filter[J].hnage and Vision Computing, 2003,21 ( 1 ) : 99 - 110.
  • 9Kailath T.The divergence and bhattacharyya distance measures in signal seleetion[J].IEEE Transactions on Communication Technology, 1967,15 ( 1 ) : 52-60.
  • 10Blake A,Curwen R,Zissennan A.A frame work for spatio-temporal control in the tracking of visual contours[J].Int Journal of Computer Vision, 1993,11 (2) : 127-145.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部