期刊文献+

认知无线AdHoc网络干扰约束和能量高效路由算法

Cognitive wireless Ad Hoc network routing algorithm based on interference constraints and energy-efficient
下载PDF
导出
摘要 为了减少认知无线Ad Hoc网络的传输中断概率,实现频谱和能量高效,提出一种干扰约束和能量高效(Interference Constraints and Energy-Efficient,ICEE)的路由算法。信道检测除了基于认知节点(Cognitive Radio,CR)对主用户(Primary Users,PU)的干扰约束外,还增加了CR节点的数据传输所需持续时间约束,以保证CR节点在有效利用空闲信道的同时减少传输中断事件的发生,减少故障重传所损耗的能量。在设计路由算法时采用了链路能耗和节点寿命作为度量,通过联合最优的链路选择方程实现网络能量高效,并延长网络的生命周期。实验仿真结果表明,相比较认知Ad hoc网络的自适应路由协议,基于联合信道分配和自适应功率控制的路由协议,ICEE算法在数据包平均能耗上分别减少了41.2%和24.5%,并且有效地延长了网络生命周期。 To reduce the transmission outage probability of cognitive wireless Ad Hoc network,and achieve frequency spectrum and energy efficiency,a routing algorithm based on interference constraints and energy-efficient is proposed.First,the channel detection in addition to cognitive node interference constraints to primary users,also adds to duration constraints required of data transmission for CR node,to ensure effective utilization of idle channels at the same time reducing the occurrence of an event of transmission interruption,and reduces the failure retransmissions loss of energy.By designing the routing algorithm with links as a measure of energy consumption and node life,it achieves network energy efficiency by joint optimal link selection equation and extends the network life cycle.The simulation results show that,compared with an adaptive cognitive Ad hoc network routing protocols,based on joint channel allocation and adaptive power control routing protocols,ICEE algorithms on packet average energy consumption decrease by41.2%and24.5%,and effectively extend the network life cycle.
作者 刘立军 花丽 周爱平 LIU Lijun;HUA Li;ZHOU Aiping(Colleges of Computer Science & Technology, Taizhou University, Taizhou, Jiangsu 225300, China;State Key Laboratory for Novel Software Technology at Nanjing University, Nanjing 210023, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第17期112-116,共5页 Computer Engineering and Applications
基金 江苏省自然科学基金(No.BK2012584)
关键词 认知无线AdHoc网络 干扰约束 能量高效 传输中断概率 cognitive wireless Ad Hoc network interference constraints energy efficiency transmission interruption probability
  • 相关文献

参考文献5

二级参考文献57

  • 1戴朝华,朱云芳,陈维荣,林建辉.云遗传算法及其应用[J].电子学报,2007,35(7):1419-1424. 被引量:84
  • 2Haykin S. Cognitive radio: brain-empowered wireless communications[J]. IEEE Journal on Selected Areas in Communications, 2005,23(2) :201 - 220.
  • 3Zhang Yonghong, Leung Cyril. A distributed algorithm for resource allocation in OFDM cognitive radio systems [J]. IEEE Transactions on Vehicular Technology, 2011,60(2) ;546 - 554.
  • 4Mahmoud H A, Yucek T, Arslan H. OFDM for cogni- tive radio: merits and challenges[J]. IEEE Wireless Communications Magazine, 2010,16(2) : 6 -15.
  • 5Cheng P, Zhang Z, Chen H H, et al. Optimal distributed joint frequency, rate, and power allocation in cognitive OFDMA systems[J]. IET Commun, 2008, 2(6) :815 - 826.
  • 6Kang X, Liang Y C, Nallanathan A. Optimal power allocation for fading channels in cognitive radio networks: ergodic capacity and outage capacity [J]. IEEE Trans on Wireless Commun, 2009, 8 (2) : 21 - 29.
  • 7He An, Bae Kyung Kyoon. A survey of artificial intelligence for cognitive radios[J]. IEEE Transactions on Vehicular Technology, 2010,59 (4) : 2132 - 2139.
  • 8Wang Wei, Wang Wenbo. A resource allocation scheme for OFDMA-based cognitive radio networks[J]. International Journal of Communications System, 2010, 22(5) :603 - 623.
  • 9Musbah Shaat, Faouzi Bader. Fair and efficient resource allocation algorithm for uplink multi-carrier based cognitive networks [C] // Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications ( PIMRC ). Massachusetts, USA:MIT Press, 2010:1212-1217.
  • 10Zhang Rui, Cui Shuguang, Liang Yingchang. On erg- odic sum capacity of fading cognitive multiple-access and broadcast channels [J]. IEEE Transaction on Information Theory, 2009,55(11) :5161 - 5178.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部