期刊文献+

气孔对镁铝尖晶石耐火材料的温度场和热应力场的影响模拟 被引量:1

Simulation of Porosity Effect on Temperature Field and Thermal Stress Field of Magnesia Alumina Spinel Refractory
下载PDF
导出
摘要 为研究气孔对镁铝尖晶石耐火材料温度场和热应力场的影响,设计气孔率分别为23%、30%、40%,气孔直径分别为0.023、0.041、0.054 mm的9种模型,采用Ansys分析软件计算温度分布云图、温度梯度分布云图和热应力分布云图。结果表明:随气孔直径增大或气孔率的增大,镁铝尖晶石的散热速度减小;当气孔率一定时,随气孔直径增大,镁铝尖晶石温度梯度减小,热应力减小;当气孔直径一定时,随气孔率增大,镁铝尖晶石温度梯度增大,热应力增大。 9porosity models,whose porosity ratios are23%,30%and40%,and porosity diameters are0.023mm,0.041mm,and0.054mm,respectively,were designed in order to study the porosity effect of the magnesium alumina spinel refractory on its temperature field andthermal stresses field.The temperature distribution,temperature gradient,and thermal stress were calculated by using Ansys analysis software.Results indicate that the heat dissipation rate of the spinel decreases with the increase of the porosity ratio or the increase of the pore diameter.When the porosity is constant,the temperature gradient and thermal stress of the spinel decrease with the increase of the pore diameter;whenthe pore diameter is constant,the temperature gradient and thermal stress of the spinel increase with the increase of the porosity ratio.
作者 魏瀚 王俊涛 陈松林 袁林 刘锡俊 刘士范 WEI Han;WANG Juntao;CHEN Songlin;YUAN Lin;LIU Xijun;LIU Shifan(Ruitai Materials Technology Co., Ltd., China Building Materials Academy, Beijing 100024, China;Yixing Refractory Co., Ltd.,Yixing 214265, Jiangsu, China)
出处 《陶瓷学报》 北大核心 2017年第4期518-523,共6页 Journal of Ceramics
基金 国家科技支撑计划(2014BAC02B03) 宜兴市重点研发计划(YGB2016020)
关键词 镁铝尖晶石 气孔 散热速度 温度梯度 热应力 magnesia alumina spinel pore cooling speed thermal stress temperature gradient
  • 相关文献

参考文献7

二级参考文献31

  • 1陈肇友.炼铝工业用耐火材料及其发展动向[J].耐火材料,1996,30(1):46-49. 被引量:22
  • 2Denis S, Gautier E, Simon A, et al. Stress-phase-transformation interactions-basic principles, modeling and calculation of internal stresses [ J]. Materials Science and Technology, 1985,1 ( 10 ) : 805 - 814.
  • 3Inoue T,Arimoto K. Development and implementation of CAE system " HEARTS" for heat treatment simulation based on metallo-thermao-mechauics [ J ]. Materials Engineering and Performance, 1997,6 ( 1 ) :51 - 60.
  • 4Ferguson B L, Li Z, Freborg A M. Modeling heat treatment of steel parts[ J]. Computational Materials Science,2005,34 (3) :274 -281.
  • 5Simsir C,Gtir C H. 3D FEM simulation of steel quenching and investigation of the effect of asymmetric geometry on residual stress distribution [ J]. Materials Processing Technology, 2008,207 ( 1 - 3 ) :211 - 221.
  • 6Lee S J, Lee Y K. Finite element simulation of quench distortion in a low-alloy steel incorporating transformation kinetics [ J ]. Acta Materialia,2008, 56(7) :1482 - 1490.
  • 7Arimoto K, Yamanaka S, Michiharu N, et al. Explanation of the origin of quench distortion and residual stress in specimens using computer simulation [ J ]. Microstructure and Materials Properties,2009,4 ( 2 ) : 168 - 186.
  • 8Inoue T, Yamaguchi T, Wang Z G. Stresses and phase transformations occurring in quenching of carburized steel gear wheel[ J ]. Material Science and Technology, 1985,1 ( 10 ) : 872 - 876.
  • 9Li H P, Zhao G Q, He L F. Finite element method based simulation of stress-strain field in the quenching process [ J]. Materials Science and Engineering A, 2008,478 ( 1 - 2 ) : 276 - 290.
  • 10Li H P,Zhao G Q,Niu S T,et al. FEM simulation of quenching process and experimental verification of simulation results[ Jl. Materials Science and Engineering A, 2007,452 - 453 ( 4 ) :705 - 714.

共引文献51

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部