期刊文献+

藕节状四面体坐标系网格及其应用

Presentation and Applications of Lotus-root-shaped Grid of Tetrahedron Coordinate Systems
下载PDF
导出
摘要 为实现不同模型之间特征对应的光滑渐变,提出一种直接建立模型间对应关系的方法.根据输入模型的结构特点,首先将模型划成对应的若干部分,并对各部分依据特征进行相同的类球状四面体网格划分;然后针对每组四面体内的数据,通过计算确定源模型上的每个点在目标模型中的对应点;最终从整体上实现源模型到目标模型的直接对应.由于各部分类球状四面体网格的连接形似藕节,且对应关系的建立主要基于四面体坐标系,因而称总网格为藕节状四面体坐标系网格.多个实例结果证明,该方法能够有效地实现模型间特征对应的渐变. To achieve smooth morphing between different models with features correspondence,a method of directly establishing correspondences is proposed.Firstly according to the structural characteristics of the input models,divide them into several corresponding parts,and then generate same spherical tetrahedron mesh for each part.Secondly through relevant calculation,find the corresponding point in the target model for each point from source model in each tetrahedron.Finally establish the direct correspondence on the whole.Since the connection of spherical tetrahedron mesh shapes like lotus root,and the calculation for correspondence is mainly based on tetrahedron coordinate system,then we call the generated grid lotus-root-shaped grid of tetrahedron coordinate systems.The experiment results show that this method can effectively realize3D morphing with features correspondences.
作者 张晓盟 Zhang Xiaomeng(Laboratory of High Dimensional Biomimetic Informatics and its Applications, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第9期1696-1704,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(90920013)
关键词 四面体坐标系 藕节状四面体坐标系网格 三维渐变 计算机动画 tetrahedron coordinate system lotus-root-shaped grid of tetrahedron coordinate systems 3D morphing computer animation
  • 相关文献

参考文献3

二级参考文献14

  • 1金小刚,鲍虎军,彭群生.计算机动画技术综述[J].软件学报,1997,8(4):241-251. 被引量:58
  • 2Nealen A, MOller M, Keiser R, et al. Physically based deformable models in computer graphics[J]. Computer Graphics Forum, 2006, 25(4): 809-836.
  • 3Sederberg T W, Parry S R. Free-form deformation of solid geometric models[C]IIProceedings of the 13th Annual Confer?ence on Computer Graphics and Interactive Techniques. New York: ACM Press, 1986: 151-160.
  • 4Gain J, Bechmann D. A survey of spatial deformation from a user-centered perspective[J]. ACM Transactions on Graphics, 2008,27(4): Article No. 107.
  • 5Hormann K, Floater M S. Mean value coordinates for arbitrary planar polygons[J]. ACM Transactions on Graphics , 2006, 25(4): 1424-1441.
  • 6Joshi P, Meyer M, DeRose T, et al. Harmonic coordinates for character articulation[J]. ACM Transactions on Graphics, 2007, 26(3): Article No.71.
  • 7Lipman Y, Levin D, Cohen-Or D. Green coordinates[J]. ACM Transactions on Graphics ,2008, 27(3): Article No.78.
  • 8Sorkine 0, Cohen-Or D, Lipman Y, et al. Laplacian surface ed?iting[C]//Proceedings of the Eurographics/ ACM SIGGRAPH Symposium on Geometry Processing. New York: ACM Press, 2004: 175-184.
  • 9GoldmanR.计算机图形学与几何造型导论[M].邓建松,等译.北京:清华大学出版社,2011:36-179.
  • 10Schoberl J. NetGen an advancing front 2D/3D-mesh generator based on abstract rules[J]. Computing and Visualization in Science, 1997, 1(1): 41-52.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部