摘要
针对现有粒子群神经网络算法存在误差较大与不易收敛等问题,提出了一种动态粒子群运动特性下的神经网络目标搜索算法,该算法引入方向因子对传统的PSO算法进行改进;结合粒子间的运动状态制定了最大速度的约束机制,来保证粒子的搜索质量;并根据粒子间距与适应度提出了过早熟判断机制,来保证算法的收敛效果。实验结果表明,该算法能够在不同的经典测试函数均保持较好的精度与收敛效果,有效地证明了算法的可行性。
Aiming at the existing particle swarm artificial neural network has some problems of large errors and not easyto converge,a neural network target search algorithm is proposed under dynamic motion characteristics of particle swarm.It improves the traditional PSO algorithm by the direction factor.Combined with the motion state,it develops a maximumspeed constraint mechanism to ensure the quality of the particle search.According to the particle spacing and fitness,itproposes the premature judgment mechanism to ensure the convergence effect.The experimental results show that thisalgorithm can keep better accuracy and convergence effect in different benchmark functions.It effectively demonstratesthe feasibility of this algorithm.
作者
邱泽敏
赵慧青
QIU Zemin;ZHAO Huiqing(Xinhua College of Sun Yat-sen University, Guangzhou 510520, China)
出处
《计算机工程与应用》
CSCD
北大核心
2017年第18期51-55,共5页
Computer Engineering and Applications
关键词
粒子群
神经网络
运动特性
目标搜索
方向因子
particle swarm
neural network
motion characteristics
target acquisition
direction factor