期刊文献+

粒子群运动特性下的神经网络目标搜索算法 被引量:4

Neural network target search algorithm under particle swarm motion characteristics
下载PDF
导出
摘要 针对现有粒子群神经网络算法存在误差较大与不易收敛等问题,提出了一种动态粒子群运动特性下的神经网络目标搜索算法,该算法引入方向因子对传统的PSO算法进行改进;结合粒子间的运动状态制定了最大速度的约束机制,来保证粒子的搜索质量;并根据粒子间距与适应度提出了过早熟判断机制,来保证算法的收敛效果。实验结果表明,该算法能够在不同的经典测试函数均保持较好的精度与收敛效果,有效地证明了算法的可行性。 Aiming at the existing particle swarm artificial neural network has some problems of large errors and not easyto converge,a neural network target search algorithm is proposed under dynamic motion characteristics of particle swarm.It improves the traditional PSO algorithm by the direction factor.Combined with the motion state,it develops a maximumspeed constraint mechanism to ensure the quality of the particle search.According to the particle spacing and fitness,itproposes the premature judgment mechanism to ensure the convergence effect.The experimental results show that thisalgorithm can keep better accuracy and convergence effect in different benchmark functions.It effectively demonstratesthe feasibility of this algorithm.
作者 邱泽敏 赵慧青 QIU Zemin;ZHAO Huiqing(Xinhua College of Sun Yat-sen University, Guangzhou 510520, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第18期51-55,共5页 Computer Engineering and Applications
关键词 粒子群 神经网络 运动特性 目标搜索 方向因子 particle swarm neural network motion characteristics target acquisition direction factor
  • 相关文献

参考文献2

二级参考文献37

  • 1Huang Y Z, Fan N. Learning from interpolated images using neural networks for digital forensics. In: Proceedings of 23rd IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010. 177-182.
  • 2Zhang D B, Hu D W, Shen L C, et al. Design of an artificial bionic neural network to control fish-robot's locomotion. Neurocomputing, 2008, 71:648-654.
  • 3Wang S T, Fu D, Xu M, et al. Advanced fuzzy cellular neural network: application to CT liver images. Artif Intell Med, 2007, 39:65-77.
  • 4Moody J, Darken C J. Fast learning in network of locally-tuned processing units. Neural Comput, 1989, 1:281-294.
  • 5Barcel6-Rieo F, Dez J L, Bondia J. New possibilistie method for discovering linear local behavior using hyper-gaussian distributed membership function. Knowl Inf Syst, 2012, 30:377 403.
  • 6Uykan Z, Guzelis C. Input-output clustering for determining the centers of radial basis function networks. In: Pro- ceedings of ECCTD, Budapest, 1997. 435 439.
  • 7Gomm J B, Yu D L. Selecting radial basis function network centers with recursive orthogonal least squares training. IEEE Trans Neural Netw, 2000, 11:306 314.
  • 8Zhou B D, Yao H L, Shi M H, et al. An new immune genetic algorithm based on uniform design sampling. Knowl Inf Syst, 2012, 31:389-403.
  • 9Lacerda E, de Carvalho A, Ludermir T. Evolutionary optimization of RBF networks. Int J Neural Syst, 2003, 11: 287-294.
  • 10Hong X, Chen S. A new RBF neural network with boundary value constraints. IEEE Trans Syst Man Cybern B- Cybern, 2009, 39:298 303.

共引文献6

同被引文献30

引证文献4

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部