期刊文献+

基于奇相干光源和量子存储的量子密钥分配协议

Quantum key distribution protocol based on odd coherent light source and quantum storage
下载PDF
导出
摘要 针对传统量子密钥分配协议使用弱相干光源带来的密钥生成率较低的问题,对光源进行优化,用奇相干光源代替弱相干光源,提出了基于奇相干光源和量子存储的测量设备无关量子密钥分配协议。对比了具有奇相干光源和量子存储的测量设备无关量子密钥分配协议与基于弱相干光源测量设备无关量子密钥分配协议的性能优劣。分析了基于奇相干光源和量子存储的测量设备无关量子密钥分配协议中,密钥生成率、最小退相干时间与安全传输距离之间的关系。仿真结果表明,引入奇相干光源大大减少了传统弱相干光源的多光子数,弥补了其在光源上的不足之处。随着安全传输距离的增加,密钥生成率随之降低,但基于奇相干光源和量子存储的量子密钥分配协议性能仍然较高。 Aiming at the problem that the key generation rate is too low when the weak coherent light source used in thetraditional quantum key distribution protocol,this paper optimizes the light source,uses odd coherent light source toreplace the weak coherent light source,and proposes measurement-device-independent quantum key distribution protocolbased on odd coherent light source and quantum storage.This paper compares the performance of measurement-deviceindependentquantum key distribution protocols based on odd coherent light source and quantum storage with the protocolsbased on weak coherent light source,also analyzes the relationship between the key generation rate,minimum decoherencetime and the safe transmission distance in the quantum key distribution protocol based on odd coherent lightsource and quantum storage.The simulation results show that the photon number is greatly reduced by the introduction ofodd coherent light source,which makes up the deficiency of the traditional light source.With the increase of safe transmissiondistance,the key generation rate decreases,but the performance based on odd coherent light source and quantum storageis still higher than that of the traditional one.
作者 康丹娜 何业锋 KANG Danna;HE Yefeng(School of Communications and Information Engineering, Xi’an University of Posts & Telecommunications, Xi’an 710121, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第18期73-76,共4页 Computer Engineering and Applications
基金 陕西省自然科学基础研究计划项目(No.2017JM6037)
关键词 量子光学 奇相干光源 量子密钥分配 量子存储 quantum optics odd coherent light source quantum key distribution quantum storage
  • 相关文献

参考文献4

二级参考文献45

  • 1Bennet C H, Brassard G 1984 Proc. IEEE International Conference Computers, Systems, and Signal Processing Bangalore, India, December 9-12,1984 pp175-179.
  • 2Shor P W, Preskill J 2000 Phys. Rev. Lett. 85 441.
  • 3Mayers D 2001 J. ACM 48 351.
  • 4Gottesman D, Lo H K, Lutkenhaus N, Preskill J 2004 Quantum Infor. Comput. 4 325.
  • 5东晨, 赵尚弘, 董毅, 赵卫虎, 赵静 2014 物理学报 63 170303.
  • 6Sheng Y B, Zhou L, Cheng W W, Gong L Y, Wang L, Zhan S M 2013 Chin. Phys. B 22 030314.
  • 7Yin Z Q, Han Z F, Chen W, Xu F X, Wu Q L, Guo G.
  • 8Scarani V, Bechmann-Pasquinucci H, Cerf N J, Dusek M, Lutkenhaus N, Peev M 2009 Rev. Mod. Phys. 81 1301.
  • 9Sangouard N, Simon C, Zhao B, Chen Y A, de Riedmateen H, Pan J W, Gisin N 2008 Phys. Rev. A 77 0602301.
  • 10Briegel H J, Dür W, Cirac J I, Zoller P 1998 Phys. Rev. Lett. 81 5932.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部