期刊文献+

针对蛋白质复合体检测的自学习图聚类(英文)

A self-learning graph clustering approach for protein complexes detection
下载PDF
导出
摘要 蛋白质复合体是由两条或多条相关联的多肽链组成,在生物过程中起着重要作用.假如用图表示蛋白质–蛋白质相互作用(protein-protein interactions,PPI)网络数据,那么从中找出紧密耦合的蛋白质复合体是非常困难的,特别是在近年来PPI网络的容量大大增加的情况下.在本文中,通过对称非负矩阵分解,针对蛋白质复合体检测问题提出了一种图聚类方法,该方法可以有效地从复杂网络中检测密集的连通子图.并且将此方法和当前最先进的一些方法在3个PPI数据集中用同一个基准进行比较.实验结果表明,本文的方法在3个拥有不同大小和密度的数据集中均显著优于其它方法. Protein complex is a group of two or more associated polypeptide chains which plays essential roles in biological process.Given a graph representing protein-protein interactions(PPI)data,it is important but non-trivial to find protein complexes,the subsets of proteins that are closely coupled,from it,particularly in the condition that the PPI network has increased greatly in capacity in the recent years.In this paper,we propose a graph based clustering approach by adopting symmetric non-negative matrix factorization,which can effectively detect densely connected subgraphs from complex networks.We compare the performance of our approach with state-of-the-art approaches in three PPI networks with a well known benchmark complexes.The experimental results show that our approach significantly outperforms other methods in three PPI networks with different data sizes and densities.
作者 朱佳 武兴成 林雪琴 肖丹阳 肖菁 黄晋 贺超波 ZHU Jia;WU Xing-cheng;LIN Xue-qin;XIAO Dan-yang;XIAO Jing;HUANG Jin;HE Chao-bo(School of Computer Science, South China Normal University, Guangzhou Guangdong 510631, China;School of Information Science and Technology, Zhongkai University of Agriculture and Engineering,Guangzhou Guangdong 510225, China)
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2017年第6期776-782,共7页 Control Theory & Applications
基金 Supported by Natural Science Foundation of Guangdong Province,China(2015A030310509) National Science Foundation of China(61370229,61272067,61303049) S&T Planning Key Projects of Guangdong(2014B010117007,2015B010109003,2015A030401087,2016A030303055,2016B030305004,2016B010109008)
关键词 图聚类 蛋白质复合体 非负矩阵分解 graph clustering protein complexes non-negative matrix factorization
  • 相关文献

参考文献1

二级参考文献10

  • 1PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5): 341- 356.
  • 2PAWLAK Z. Rough set theory and application to data analysis[J]. J of Cybernetics and Systems: An International Journal, 1998, 29:661 - 356.
  • 3曾黄麟.粗集理论与应用[M].重庆:重庆大学出版社,1996.
  • 4WONG S K M, ZIARKO W. On optional decision rules in decision tables[J]. J of Bulletin of Polish Academy of Science, 1985, 33:693 - 696.
  • 5WANG J, MIAO D Q. Analysis on attribute reduction strategies of rough set[J]. J Computer Science & Technology, 1998, 113(2): 189 - 193.
  • 6周波涛.可满足性问题(SAT)的快速算法的研究[D].广东,广州:华南理工大学,2000.
  • 7SKOWRON A, ORLOWSKI M W. The discernibility matrices and functions in information systems[C]//Int Decision Support, Handbook of Applications and Advances of the Rough Sets Theory. USA: Kluwer Academic Publishers, 1992:331 - 362
  • 8SLOWINSKI K. Rough classification of HSV patients[C]//Int Decision Support, Handbook of Applications and Advances of the Rough Sets Theory. USA: Kluwer Academic Publishers, 1992: 77- 93.
  • 9GUO J Y. Rough set-based approach to data mining[D]. USA: Case Western Reserve University, 2003.
  • 10叶东毅,陈昭炯.Rough Set中正区域的若干性质[J].福州大学学报(自然科学版),2002,30(5):521-523. 被引量:4

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部