期刊文献+

LiH合成反应器的CFD模拟与过程强化 被引量:1

CFD Simulation and Process Intensification of LiH Synthesis Reactor
下载PDF
导出
摘要 为了强化釜式氢化锂(LiH)合成反应器,采用计算流体力学(CFD)方法模拟了该坩埚反应器在静态操作、机械搅拌和气体鼓泡三种情况下的物质传递、化学反应和流体运动规律。模拟结果表明:自然对流对反应有较大的促进作用,其使LiH脱离反应界面,保证界面处"新鲜"金属Li与氢气的有效接触;另外,自然对流也促使反应器内物料良好混合;机械搅拌虽提高了反应物料的混合状况,但并不显著增加反应界面,过程强化程度有限;气体鼓泡可大幅度增加气液接触面积,反应时间大幅度缩减,是一种优选的LiH合成反应器构型。 In order to strength the Lithium Hydride(LiH)synthesis reactor,the material transfer,chemical reaction and fluid motion of the crucible reactor were simulated by the method of computing fluid dynamics(CFD)in static operation,mechanical stirring and gas bubbling.Simulation results showed that natural convection had a great effect on the chemical reaction which made LiH out of reaction interface and ensured the efficient contact between the“fresh”metal Lithium(Li)and the hydrogen at the interface.In addition,natural convection also facilitated good mixing of the materials in the reactor.Although the mechanical stirring increased the mixing of the reaction materials,but did not significantly increase the reaction interface,hence the degree of the process strengthening was limited.Gas bubbling can greatly increase the gas-liquid contact area and the reaction time was greatly reduced.Therefore,bubble reactor is a preferred LiH synthesis eactor configuration.
作者 蒋涛 王丽军 Jiang Tao;Wang Lijun(China Nuclear Power Engineering Company Limited, Zhengzhou Branch, Zhengzhou 45000, China;College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China)
出处 《化学反应工程与工艺》 CAS CSCD 北大核心 2017年第3期215-220,共6页 Chemical Reaction Engineering and Technology
关键词 氢化锂 釜式反应器 过程强化 计算流体力学 lithium hydride tank reactor process intensification computing fluid dynamics
  • 相关文献

参考文献2

二级参考文献15

  • 1张晗亮,张健,李增峰,黄瑜.氢化法制备不饱和氢化钛粉末[J].稀有金属,2006,30(z1):10-12. 被引量:4
  • 2蔡军,王明玺,薛卫东,邹乐西.H_2O在LiH固体表面的吸附与成键[J].原子与分子物理学报,2006,23(1):85-89. 被引量:4
  • 3廖世健,孔巍,刘和众,李精奎,徐筠.温和条件下氢化锂的催化合成[J]化学学报,1985(08).
  • 4张永刚,周国君,陆惠宝.原子吸收分光光度法测定氢化锂中钠、钾、钙、镁、铜、铁、铬、镍、锰[J]原子能科学技术,1981(04).
  • 5Ewald V.Decomposition pressure in the(α+β)fields of theLi-LiH,Li-LiD,and Li-LiTsystems. Journal of Nuclear Ma-terials . 1979
  • 6Pawel S J.Type 304L stainless steel corrosion in molten lithiumhydride as a function of temperature. Journal of Nuclear Ma-terials . 1993
  • 7Pawel S J.Compatibility of potential containment materials withmolten lithium hydride at800℃. Journal of Nuclear Materi-als . 1993
  • 8Welch F H.Lithium hydride technology I,Properties of lithiumhydride and corrosion studies. NAA-SR-9400 . 1964
  • 9Welch F H.Lithiumhydride technology III,Properties of lithiumhydride for SNAP shielding applications. NAA-SR-9400 . 1967
  • 10Welch F H.Lithium hydride:a space age shielding material. Nuclear Engineer The . 1974

共引文献23

同被引文献13

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部