摘要
The composite bucket foundation (CBF) is a new kind of foundation which has been applied in the offshore wind industry. A reasonable connection pattern between the tower and the CBF top cover is crucial for load transmissions from the superstructure. Therefore, it is essential to choose an optimum structure type for the transition section. The line type and the arc transition section models were established by ABAQUS, and the internal forces of cross section were extracted along the height direction. Specifically, the force transfer mechanism for different types of the transition sections was investigated comparatively with monotonic as well as composite loadings. The results show that the curved transition structure exhibits the better mechanical characteristics under the monotonic and composite loadings, and the reason can be illustrated that its specific arc-shape structure can effectively convert the tremendous bending moment from the turbine tower into the limited tensile and compressive stresses downwards, without the occurrence of force concentration. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg.
The composite bucket foundation(CBF) is a new kind of foundation which has been applied in the offshore wind industry. A reasonable connection pattern between the tower and the CBF top cover is crucial for load transmissions from the superstructure. Therefore, it is essential to choose an optimum structure type for the transition section. The line type and the arc transition section models were established by ABAQUS, and the internal forces of cross section were extracted along the height direction. Specifically, the force transfer mechanism for different types of the transition sections was investigated comparatively with monotonic as well as composite loadings. The results show that the curved transition structure exhibits the better mechanical characteristics under the monotonic and composite loadings, and the reason can be illustrated that its specific arc-shape structure can effectively convert the tremendous bending moment from the turbine tower into the limited tensile and compressive stresses downwards, without the occurrence of force concentration.
基金
supported by the National Science Foundation of China(No.51379142)
Tianjin Natural Science Foundation(No.13JCQNJC06900)