期刊文献+

Evolutionary Algorithms in Software Defined Networks: Techniques, Applications, and Issues 被引量:1

下载PDF
导出
摘要 A software defined networking(SDN) system has a logically centralized control plane that maintains a global network view and enables network-wide management, optimization, and innovation. Network-wide management and optimization problems are typicallyvery complex with a huge solution space, large number of variables, and multiple objectives. Heuristic algorithms can solve theseproblems in an acceptable time but are usually limited to some particular problem circumstances. On the other hand, evolutionaryalgorithms(EAs), which are general stochastic algorithms inspired by the natural biological evolution and/or social behavior of species, can theoretically be used to solve any complex optimization problems including those found in SDNs. This paper reviewsfour types of EAs that are widely applied in current SDNs: Genetic Algorithms(GAs), Particle Swarm Optimization(PSO), Ant Colony Optimization(ACO), and Simulated Annealing(SA) by discussing their techniques, summarizing their representative applications, and highlighting their issues and future works. To the best of our knowledge, our work is the first that compares the tech-niques and categorizes the applications of these four EAs in SDNs. A software defined networking(SDN) system has a logically centralized control plane that maintains a global network view and enables network-wide management, optimization, and innovation. Network-wide management and optimization problems are typicallyvery complex with a huge solution space, large number of variables, and multiple objectives. Heuristic algorithms can solve theseproblems in an acceptable time but are usually limited to some particular problem circumstances. On the other hand, evolutionaryalgorithms(EAs), which are general stochastic algorithms inspired by the natural biological evolution and/or social behavior of species, can theoretically be used to solve any complex optimization problems including those found in SDNs. This paper reviewsfour types of EAs that are widely applied in current SDNs: Genetic Algorithms(GAs), Particle Swarm Optimization(PSO), Ant Colony Optimization(ACO), and Simulated Annealing(SA) by discussing their techniques, summarizing their representative applications, and highlighting their issues and future works. To the best of our knowledge, our work is the first that compares the tech-niques and categorizes the applications of these four EAs in SDNs.
出处 《ZTE Communications》 2017年第3期20-36,共17页 中兴通讯技术(英文版)
  • 相关文献

参考文献1

二级参考文献20

共引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部