期刊文献+

多粒度模糊粗糙集的表示与相应的信任结构 被引量:1

Representation of multigranularity fuzzy rough sets and corresponding belief structure
下载PDF
导出
摘要 利用多粒度粗糙集的上、下近似及其性质,结合模糊集的分解定理,研究多粒度模糊粗糙集的上、下近似的表示及性质,根据多粒度模糊粗糙集的上、下近似构造信任函数与似然函数。 By using the upper and lower approximations and the properties of the multi-granularity rough sets,andcombining with fuzzy sets decomposition theorem,the representation and properties of upper and lower approximationsof multi-granularity fuzzy rough sets are studied.Based on the upper and lower approximations of fuzzy rough sets,thebelief function and the probability function are constructed.
作者 胡谦 米据生 HU Qian;MI Jusheng(College of Mathematics and Information Science, Hebei Normal University, Shijiazhuang 050024, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第19期51-54,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61573127 No.61502144 No.61300121 No.61472463) 河北省自然科学基金(No.A2014205157) 河北省高校创新团队领军人才培育计划项目(No.LJRC022) 河北省高校自然科学基金(No.QN2016133) 河北师范大学博士科学基金(No.L2015B01) 河北师范大学研究生创新项目 河北省教育厅研究生创新项目(No.sj2015001)
关键词 多粒度 粗糙集 模糊集 信任函数 似然函数 multigranularity rough set fuzzy set belief function probability function
  • 相关文献

参考文献1

二级参考文献29

  • 1Yao Y Y. On generalizing rough set theory//Proceedings of the 9th International Conference (RSFDGrC). Chongqing, China, Springer, 2003: 44-51.
  • 2Yao Y Y. Information granulation and rough set approxima tion. International Journal of Intelligent Systems, 2001, 16 (1): 87-104.
  • 3Yao Y Y, Zhou B. A logic language of granular computing// Proceedings of the 6th IEEE International Conference on Cognitive Informatics. Beijing, China, 2006:178-185.
  • 4Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data. Dordrecht: Kluwer Academic Publishers, 1991.
  • 5Ganter B, Wille R. Formal Concept Analysis: Mathematical Foundations. New York: Springer Verlag, 1999.
  • 6Wille R. Restructuring lattice theory: An approach based on hierarchies of eoncepts//Ivan Rival. Ordered Sets. Dordecht Boston: Reidel, 1982:445-470.
  • 7Doignon J P, Falmagne J C. Spaces for the assessment of knowledge. International Journal of Man-Machine Studies, 1985, 23(2): 175-196.
  • 8Doignon J P, Falmagne J C. Knowledge Spaces. German: Springer, 1999.
  • 9Duntsch I, Gediga G. A note on the correspondences among entail relations, rough set dependencies, and logical conse quence. Mathematical Psychology, 2001, 45(2) :393-401.
  • 10Zhu W, Wang F Y. Properties of the first type of covering based rough sets//Proceedings of the ICDM 06. Hong Kong, China, 2006:407-411.

共引文献53

同被引文献12

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部