期刊文献+

改进卷积自编码器的局部特征描述算法 被引量:2

New local feature description algorithm based on improved convolutional auto-encode
下载PDF
导出
摘要 针对非监督学习方法提取的底层特征用于特征描述时可区分性不强,对图像旋转、尺度等变换敏感的问题,提出了一种改进卷积自编码器的局部特征描述算法(Convolutional Auto-Encoder Descriptor,CAE-D)。CAE-D算法利用信息熵评价卷积核性能,提出在CAE中添加卷积核信息熵约束规则,通过均值化卷积核携带的局部特征信息,提升卷积特征描述的可区分性;在特征描述前使用传统SIFT中主方向分配算法确定局部图像的主方向,并引入降采样操作,进一步提升特征描述的旋转不变性及鲁棒性。图像匹配实验结果验证了改进策略的有效性,CAE-D算法优于当前先进的KAZE、SIFT,而运行时间相比SIFT缩短了47.14%。 To solve the problem that low-level features extracted by unsupervised learning methods are easily disturbed byimage’s rotation and scaling as well as difficult to distinguish when used in feature description,a local feature descriptionalgorithm is proposed based on improved Convolutional Auto-Encode(CAE-D).Evaluating the convolution kernel’sperformance by information entropy,a convolution kernel’s entropy constraint rule is proposed to improve the distinguishability of convolution feature description through convolution kernels carrying local information.Traditional SIFT’sorientation assignment algorithm is used to assign the main direction of local image before feature description,and thefeature-map is down-sampled to enhance rotation-invariance and robustness of the feature description.The results ofimage matching show that CAE-D is competitive with the performance of KAZE and SIFT descriptor in geometric andphotometric deformations and takes47.14%less time than SIFT.
作者 贾琪 王晓丹 周来恩 翟夕阳 JIA Qi;WANG Xiaodan;ZHOU Laien;ZHAI Xiyang(Air and Missile Defense College, Air Force Engineering University, Xi’an 710051, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第19期184-191,215,共9页 Computer Engineering and Applications
基金 国家自然科学基金(No.61273275) 航空科学基金(No.20151996015)
关键词 非监督学习 特征描述 卷积自编码器 信息熵 unsupervised learning feature description convolutional auto-encoder information entropy
  • 相关文献

参考文献4

二级参考文献61

  • 1RASHEED W, AN Y, PAN S, et al. Image retrieval using maximum frequency of local histogram based color correlogram [ C ]// AICMS 08: 2nd Asia International Conference on Modeling & Simulation. Washington, DC: IEEE Computer Society, 2008:322 - 326.
  • 2RIAZ M, KANG G. Efficient image retrieval using adaptive segmentation of HSV color space [ C]// Proceedings of the 2008 International Conference on Computational Sciences and Its Applications. Washington, DC: IEEE Computer Society, 2008:491-496.
  • 3ZHANG LIANG-BIN, XI LI-FENG, ZHOU BI-SHUI. Image retrieval method based on entropy and fractal coding [ J]. WSEAS Transactions on Systems, 2008, 7(4):332-341.
  • 4DEL B A, PALA P. Visual image retrieval by elastic matching of user sketches [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(2) : 121 - 132.
  • 5BERMAN A P, SHAPIRO L G. Efficient content-based retrieval: Experimental results [ C]// Proceedings of the IEEE Workshop on Content-Based Access of Image and Video Libraries. Washington, DC: IEEE Computer Society, 1999:55-61.
  • 6范自柱,刘二根.一种新的颜色信息熵图像检索方法[J].计算机应用研究,2008,25(1):281-282. 被引量:6
  • 7LAROCHELLE H, ERHAN D, COURVILLE A, et al. An empirical evaluation of deep architectures on problems with many factors of variation [ C ]// Proceedings of the 24th international conference on Machine learning. New York: ACM, 2007: 473-480.
  • 8SRIVASTAVA N, SALAKHUTDINOV R. Multimodal learning with deep boltzmann machines[ C]// Advances in neural information processing systems 2012. New York: ACM, 2012: 2222-2230.
  • 9LEE H, GROSSE R, RANGANATH Convolutional deep belief networks R, et al. for scalable unsupervised learning of hierarchical representations [ C ]//Proceedings of the 26th Annual International Conference on Machine Learning. New York: ACM, 2009: 609-616.
  • 10GOODFELLOW I, WARDE-FARLEY D, MIRZA M, et al. Maxout Networks [ C ]// Proceedings of the 30th International Conference on Machine Learning. Piscataway. NJ: IEEE, 2013: 1319-1327.

共引文献17

同被引文献19

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部