期刊文献+

不确定性网络连续高斯协同局部聚类更新方法

Gauss Collaborative Local Clustering Updating Method of Continuous Frontier for Uncertainty Network
下载PDF
导出
摘要 为提高不确定性无线传感器网络(wireless sensor network,WSN)模型的危险边界局部演化特性感知精度,提出了一种基于局部聚类的不确定性WSN模型网络局部前沿协同更新算法。首先,给出基于高斯的WSN感知距离不确定性模型和速度不确定性模型,并给出封闭形式的考虑WSN节点有限处理能力和能量约束的连续贝叶斯局部前沿速度更新模型;其次,基于局部聚类更新算法对WSN网络主节点、列表、辅助列表进行更新,实现危险连续局部前沿的实时更新,实现复杂危险演变特征的分布式准确预测;最后,通过实验对比,所提方法对于传感器节点故障和通信链路故障具有强大的鲁棒性。 In order to improve the sensing accuracy of the local evolution of the risk boundary of uncertain wireless sensor network(WSN)model,this paper conducts a Gauss collaborative local clustering updating of continuous frontier for uncertainty WSN.Firstly,this paper presents the distance uncertainty model and velocity uncertainty model,and also gives the closed form of the continuous Bayesian local front velocity update model,which considers the limited processing power of WSN node and energy constraints.Secondly,the local clustering update algorithm is used to update the master node,the list and the auxiliary list for WSN,which realizes the real-time update of the continuous local front of the danger,and also realizes the distributed accurate prediction of the complicated risk evolution.Finally,the experimental results show that the proposed method is robust to sensor node failures and communication link failures.
作者 张克柱 杨忆 张勇 ZHANG Kezhu;YANG Yi;ZHANG Yong(Department of Computer Information, Suzhou Vocational Technical College, Suzhou, Anhui 234101, China;College of Computer Science, Huaibei Normal University, Huaibei, Anhui 235000, China)
出处 《计算机科学与探索》 CSCD 北大核心 2017年第10期1672-1680,共9页 Journal of Frontiers of Computer Science and Technology
基金 国家自然科学基金No.61102117 安徽高校自然科学研究重点项目No.KJ2016A782~~
关键词 不确定性模型 无线传感器网络 连续前沿 局部聚类 协同更新 uncertainty model wireless sensor network continuous front local clustering cooperative update
  • 相关文献

参考文献3

二级参考文献25

  • 1Sun LM, Li JZ, Chen Y, Zhu SH. Wireless Sensor Networks. Beijing: Tsinghua University Press, 2005. (in Chinese).
  • 2Li ZJ, Li M, Liu JL, Tang SJ. Understanding the flooding in low-duty-cycle wireless sensor networks. In: Proc. of the Parallel Processing (ICPP). IEEE Computer Society, 2011. 673-682. [doi: 10.1109/ICPP.2011.56].
  • 3Dutta P, Hui J, Jeong J, Kim SK, Sharp C, Taneja J, Tolle G, Whitehouse K, Culler D. Trio: Enabling sustainable and scalable outdoor wireless sensor network deployments. In: Proc. of the IPSN 2006. 2006.
  • 4Rahimi M, Shah H, Sukhatme GS, Heideman J, Estrin D. Studying the feasibility of energy harvesting in a mobile sensor network. In: Proc. of the ICRA 2003. 2003. 19-24. [doi: 10.1109/ROBOT.2003.1241567].
  • 5Kansal A, Potter D, Srivastava MB. Performance aware tasking for environmentally powered sensor networks. In: Proc. of the SIGMETRICS 2004. 2004. 223-234. [doi: 10.1145/1005686.1005714].
  • 6Yang X, Vaidya NH. A wakeup scheme for sensor networks: Achieving balance between energy saving and end-to-end delay. In: Proc. of the RTAS 2004.2004.
  • 7Gu Y, Zhu T, He T. ESC: Energy synchronized communication in sustainable sensor networks. In: Proc. of the ICNP 2009. 2009. 52-62.
  • 8Felemban E, Lee CG, Ekici E, Boder R, Vural S. Probabilistic QoS guarantee in reliability and timeliness domains in wireless sensor networks. In: Proc. of the INFOCOM 2005. 2005. 2646-2657.
  • 9Gu Y, He T, Lin M, Xu J. Spatiotemporal delay control for low-duty-cycle sensor networks. In: Proc. of the RTSS 2009.2009.
  • 10Dutta P, Culler D. Practical asynchronous neighbor discovery and rendezvous for mobile sensing applications. In: Proc. of the SenSys 2008. 2008.71-83.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部