期刊文献+

基于大数据模糊K均值聚类的英语教学能力评估算法研究 被引量:10

Research of English teaching capability evaluation algorithm based on fuzzy K-means clustering of big data
下载PDF
导出
摘要 针对传统的英语教学能力评估算法存在大数据信息分类不准的问题,提出基于大数据模糊K均值聚类和信息融合的英语教学能力估计算法。首先,建立约束参量指标分析模型;其次,使用定量递归分析方法对大数据信息模型的能力进行评估,实现能力约束特征信息的熵特征提取;最后,融合大数据信息融合及K均值聚类算法,实现英语教学能力的指标参数聚类和整合,编制相应的教学资源分配计划,实现英语教学能力评估。试验结果表明,采用该方法进行英语教学能力评估,具有较好的信息融合分析能力,提高了教学能力评估的准确性和教学资源应用效率。 In allusion to that the traditional English teaching capability evaluation algorithm exists the problem of inaccu?rate big data information classification,an English teaching capability evaluation algorithm based on fuzzy K?means clustering ofbig data and information fusion is proposed.First,the analysis model of constraint parameters is established.Second,the quanti?tative recursive analysis method is used to evaluate the capability of the big data model and realize entropy feature extraction ofcapability constraint feature information.Finally,big data fusion is combined with K?means clustering algorithm to realize clus?tering and integration of English teaching capability parameters,prepare the corresponding teaching resource allocation plan,and realize English teaching capability evaluation.The experimental results show that this method has good information fusionand analysis capability,and improves the accuracy of teaching capability evaluation and the efficiency of teaching resource appli?cation.
作者 戈国梁 GE Guoliang(Taizhou University,Taizhou 225300,China)
机构地区 泰州学院
出处 《现代电子技术》 北大核心 2017年第20期31-33,共3页 Modern Electronics Technique
基金 江苏省现代教育技术研究2015年度课题(2015-R-41638)
关键词 大数据 英语教学 教学能力评估 信息融合 数据聚类 big data English teaching teaching capability evaluation information fusion data clustering
  • 相关文献

参考文献4

二级参考文献52

  • 1江小平,李成华,向文,张新访,颜海涛.k-means聚类算法的MapReduce并行化实现[J].华中科技大学学报(自然科学版),2011,39(S1):120-124. 被引量:79
  • 2刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 3Xue Gui-Rong, Xing Di-Kan, Yang Qiang, et al. Deep classification in large- scale text hierarchies/ /Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Singapore, 2008: 619-626.
  • 4Dh H, Choi y, Myaeng S. Combining global and local information for enhanced deep classification/ /Proceedings of the 25th ACM SIGAPP Symposium on Applied Computing. Sierre , Switzerland, 2010: 1760-1767.
  • 5Malik H. Improving hierarchical SVMs by hierarchy flattening and lazy classification/ /Proceedings of the Large-Scale Hierarchical Classification Workshop in 32nd European Conference on Information Retrial. Milton Keynes, UK, 2010: 1-12.
  • 6Han Xiaogang , Liu Iunfa , Shen Zhiqi , et al. An optimized K -nearest neighbor algorithm for large scale hierarchical text classification/ /Proceedings of the 2011 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Athens, Greece, 2011: 2-12.
  • 7Xing Di-Kan , Xue Gui-Rong, Yang Qiang , et al. Deep classifier: Automatically categorizing search results into largescale hierarchies/ /Proceedings of the 1 st ACM International Conference On Web Search and Data Mining. New York, USA, 2008: 139-148.
  • 8Malik H, Fradkin D, Moerchen F. Single pass text classification by direct feature weighting. Knowledge and Information Systems, 2011, 28(1): 79-98.
  • 9Guan Hu , Zhou Iingyu , Guo Minyi. A class-feature-centroid classifier for text categorization/ /Proceedings of the 18th International Conference on World Wide Web. Madrid, Spain, 2009: 201-210.
  • 10Ceci M, Malerba D. Classifying web documents in a hierarchy of categories: A comprehensive study. Journal of Intelligent Information Systems, 2007, 28(1): 37-78.

共引文献137

同被引文献90

引证文献10

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部