期刊文献+

云计算环境下的三维图像数据重构方法

3D image data reconstruction method in cloud computing environment
下载PDF
导出
摘要 针对传统三维虚拟技术进行三维图像数据重构时存在重构精度低、清晰度不高的问题,提出云计算环境下的三维图像数据重构方法。构建了Hadoop结构的云计算环境,其由Map Reduce编程应用、HDFS分布式计算应用、Hbase开源数据库以及多项Apache服务器软件构成。选取体素作为三维图像数据重构的基本单元,采用各向异性分散过滤法在Hadoop结构中腐蚀体素,达到图像去噪和消除体素不稳定形态的目的。采用一种跳跃性的三维空间索引方法进行三维图像数据重构,减少对无用体素索引的过程,提高重构效率。实验结果表明,所提方法的重构效果好、清晰度高。 As the traditional3D virtual technology used to reconstruct3D image data has the problems of low accuracy andpoor resolution,a method of3D image data reconstruction in cloud computing environment is put forward.The cloud computingenvironment based on Hadoop structure was constructed,which is composed of MapReduce programming application,HDFS dis?tributed computing application,Hbase open source database and multi?term Apache server software.The voxel is selected as thebasic unit of3D image data reconstruction,and corroded in Hadoop structure with anisotropic dispersion filtering method to de?noise the image and eliminate the unstable form of the voxel.A jumping3D spatial index method is adopted to reconstruct the3D image data,reduce the useless process of voxel index,and improve the reconstruction efficiency.The experimental resultsshow that the proposed method has perfect reconstruction effect and high definition.
作者 王永祥 王鹏 WANG Yongxiang;WANG Peng(Guangzhou Vocational College of Technology and Business,Guangzhou 511442,China;School of Computer Science and Technology,Southwest University for Nationalities,Chengdu 610225,China)
出处 《现代电子技术》 北大核心 2017年第20期108-110,共3页 Modern Electronics Technique
基金 国家自然科学基金(60702075) 广州市高等学校第八批教育教学改革重点资助项目(2017A20)
关键词 云计算环境 Hadoop结构 三维图像数据 重构 三维空间索引 cloud computing environment Hadoop structure 3D image data reconstruction 3D spatial index
  • 相关文献

参考文献6

二级参考文献63

  • 1段福庆,吴福朝,胡占义.基于平行性约束的摄像机标定与3D重构[J].软件学报,2007,18(6):1350-1360. 被引量:11
  • 2吴凤和,张晓峰,施法中.基于单幅图像数据的三维重构方法研究[J].中国机械工程,2007,18(17):2071-2075. 被引量:12
  • 3Liu W,Gong B, Hu Y. A large-scale rendering system based on hadoop[C] // International Con{erenee on Pervasive Computing and Applieations. Port Elizabeth, 2011 : 470-475.
  • 4http://render.aliyun.com.
  • 5Armbrust M,Fox A,Griffit R, et al. Above the clouds: aBerke- Icy view of cloud compu-ting. Electrical Engineering and Com- puter SciencesUniversity of California at Berkeley[R]~. UCB/ EEECS-2009-28.
  • 6Technical Report,February 2009 Dean J, Ghemawat S. MapReducc: simplified data processing on large clusters[C]~//Operating Systems Design and Implementa- tion. 2004:137-150.
  • 7Dhawan S. A review of image compression and comparison of its algorithms[J]. International journal of electronics ~ communi- cationtechnology, 2011,2 : 22-26.
  • 8Weinberger M,Seroussi G, Sapiro G. LOCO-I= a low complexi- ty,context-based, lossless image compression algorithm[C]~// Data Compression Conference. Snowbird, UT, 1996 : 140-149.
  • 9Wiegand T, Sullivan G, Bjontegaard G, et al. Overview of the H. 264/AVC video coding standard[J]~. IEEE Transactions on Cir- cuits and Systems for Video Technology, 2003,13 (7) : 560-576.
  • 10Graphics and Media Lab Video Group, Computer Science, MSU. Lossless video codecs comparison[R]~. 2007.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部