摘要
基于HTTP的自适应流HAS已经成为自适应视频流服务的标准。在HAS客户端网络状态多变的情况下,硬编码形式的码率决策方法灵活性偏低,对用户体验考虑不足。为了优化用户体验质量(Qo E),提出一种基于Q-Learning的码率控制算法,结合HTTP自适应视频流客户端环境进行建模并定义状态转移规则;量化与用户Qo E相关的参数,构建新的回报函数;实验表明引入Q-Learning进行码率调整的自适应算法在码率切换的稳定性方面表现较好。
HTTP adaptive streaming(HAS)has become the standard for adaptive video streaming service.In changing network environments,current hardcoded-based rate adaptation algorithm was less flexible,and it is insufficient to consider the quality of experience(QoE).To optimize the QoE of users,a rate control approach based on Q-learning strategy was proposed.the client environments of HTTP adaptive video streaming was modeled and the state transition rule was defined.Three parameters related to QoE were quantified and a novel reward function was constructed.The experiments were employed by the Q-learning rate control approach in two typical HAS algorithms.The experiments show the rate control approach can enhance the stability of rate switching in HAS clients.
作者
熊丽荣
雷静之
金鑫
XIONG Li-rong;LEI Jing-zhi;JIN Xin(College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China)
出处
《通信学报》
EI
CSCD
北大核心
2017年第9期18-24,共7页
Journal on Communications
基金
浙江省重大科技专项重大工业基金资助项目(No.2012C11026-2)
杭州市重大科技创新专项基金资助项目(No.20132011A16)~~