期刊文献+

零相关区高斯整数序列集构造法 被引量:1

Construction of zero correlation zone Gaussian integer sequence set
下载PDF
导出
摘要 研究了具有零相关区的高斯整数序列集构造方法。该方法基于二元正交矩阵,首先利用插零法构造出具有零相关区的三元序列集。然后利用完备高斯整数序列进行滤波,从而将三元序列变换成高斯整数序列且保持序列相关函数值在零相关区内为0,得到的零相关区高斯整数序列集参数达到或几乎达到Tang-Fan-Matsufuji理论界。 The construction of zero correlation zone(ZCZ)Gaussian integer sequence set was researched.Based on binary orthogonal matrices,ZCZ ternary sequence sets were constructed by adding zeros at first.Then the ternary ZCZ squences were transformed into Gaussian integer sequences by using a perfect Gaussian integer sequence without changing the ideal autocorrelation functions and crosscorrelation functions in the zero correlation zone.The proposed ZCZ Gaussian integer sequence sets are optimal or almost optimal with respect to the Tang-Fan-Matsufuji bound.
作者 李玉博 孙嘉安 荆楠 LI Yu-bo;SUN Jia-an;JING Nan(School of Information Science & Engineering, Yanshan University, Qinhuangdao 066004, China)
出处 《通信学报》 EI CSCD 北大核心 2017年第9期25-30,共6页 Journal on Communications
基金 国家自然科学基金资助项目(No.61501395 No.61671402) 河北省自然科学基金资助项目(No.F2015203204 No.F2016203176) 燕山大学青年教师自主研究计划基金资助项目(No.16LGA009)~~
关键词 高斯整数序列 零相关区(ZCZ) 正交矩阵 完备序列 Gaussian integer sequence zero correlation zone (ZCZ) orthogonal matrix perfect sequence
  • 相关文献

参考文献1

二级参考文献16

  • 1Suehiro N. A signal design without co-channel interference for approximately synchronized CDMA systems[J]. IEEE Journal on Selected Areas in Communications, 1994, 12(5): 837-843.
  • 2Milewski A. Periodic sequences with optimal properties for channel estimation and fast start-up equalization[J]. IBM Journal of Research and Development, 1983, 27(5): 426-431.
  • 3Levenon N and Freedman A. Periodic ambiguity function of CW signals with perfect periodic autocorrelation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2): 387-395.
  • 4Chung J H, Han Y K, and Yang K. New quaternary sequences with even period and three-valued autocorrelation [J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2010, E93-A(1): 309-315.
  • 5Zeng Fan-xin, Zeng Xiao-ping, Zhang Zhen-yu, et al.. A unified construction for yielding quaternary sequences with optimal periodic autocorrelation[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96-A(7): 1593-1601.
  • 6Tang Xiao-hu and Ding Cuu-sheng. New classes of balanced quaternary and almost balanced binary sequences with optimal autocorrelation value[J]. IEEE Transactions on Information Theory, 2010, 56(12): 6398-6405.
  • 7Zeng Fan-xin, Zeng Xiao-ping, Zeng Xiao-yong, et al.. Several types of sequences with optimal autocorrelation properties[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2013, E96-A(1): 367-372.
  • 8Zeng Fan-xin, Zeng Xiao-ping, Zhang Zhen-yu, et al.. Perfect 16-QAM sequences and arrays[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2012, E95-A(10): 1740-1748.
  • 9Zeng Fan-xin, Zeng Xiao-ping, Zeng Xiao-yong, et al.. Perfect 8-QAM+ sequences[J]. IEEE Wireless Communcations Letters, 2012, 1(4): 388-391.
  • 10Hu W W, Wang S H, and Li C P. Gaussian integer sequences with ideal periodic autocorrelation functions[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 6074-6079.

共引文献8

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部