摘要
基于Ding-广义割圆序列,构造了GF(h)上一类新的周期为pm的广义割圆序列,且该序列为平衡序列。通过分析h与p的关系及多项式理论,确定了该序列的线性复杂度。结果表明,该类序列具有良好的线性复杂度性质,将它们作为密钥流序列的密码系统具有抵抗Berlekamp-Massey算法攻击的能力。
Based on the Ding-generalized cyclotomy,a new class of generalized cyclotomic sequences with length pm over the finite field of power of odd prime order was constructed,and the sequence was balanced.The linear complexity of the sequences was determined using the relationship between h and p and the theory of polynomial over finite field.It is shown that the sequence has good linear complexity,and it can resist attacks from the application of the Berlekamp-Massey algorithm.
作者
刘龙飞
杨凯
杨晓元
LIU Long-fei;YANG Kai;YANG Xiao-yuan(Key Laboratory of Network & Information Security of Armed Police Force, Engineering University of Armed Police Force, Xi’an 710086, China;Key Laboratory of Computer Network & Information Security of the Ministry of Education, Xidian University, Xi’an 710071, China)
出处
《通信学报》
EI
CSCD
北大核心
2017年第9期39-45,共7页
Journal on Communications
基金
国家密码发展基金资助项目(No.MMJJ20170112)
国家重点研发计划基金资助项目(No.2017YFB0802002)
国家自然科学基金资助项目(No.61562077
No.U1636114
No.64572521
No.61402530)
武警工程大学基础研究基金资助项目(No.WJY201518)~~
关键词
流密码
伪随机序列
广义割圆类
线性复杂度
stream cipher
pseudo-random sequence
generalized cyclotomy
linear complexity