期刊文献+

新的周期为p^m的GF(h)上广义割圆序列的线性复杂度 被引量:3

On the linear complexity of a new generalized cyclotomic sequence with length p^m over GF(h)
下载PDF
导出
摘要 基于Ding-广义割圆序列,构造了GF(h)上一类新的周期为pm的广义割圆序列,且该序列为平衡序列。通过分析h与p的关系及多项式理论,确定了该序列的线性复杂度。结果表明,该类序列具有良好的线性复杂度性质,将它们作为密钥流序列的密码系统具有抵抗Berlekamp-Massey算法攻击的能力。 Based on the Ding-generalized cyclotomy,a new class of generalized cyclotomic sequences with length pm over the finite field of power of odd prime order was constructed,and the sequence was balanced.The linear complexity of the sequences was determined using the relationship between h and p and the theory of polynomial over finite field.It is shown that the sequence has good linear complexity,and it can resist attacks from the application of the Berlekamp-Massey algorithm.
作者 刘龙飞 杨凯 杨晓元 LIU Long-fei;YANG Kai;YANG Xiao-yuan(Key Laboratory of Network & Information Security of Armed Police Force, Engineering University of Armed Police Force, Xi’an 710086, China;Key Laboratory of Computer Network & Information Security of the Ministry of Education, Xidian University, Xi’an 710071, China)
出处 《通信学报》 EI CSCD 北大核心 2017年第9期39-45,共7页 Journal on Communications
基金 国家密码发展基金资助项目(No.MMJJ20170112) 国家重点研发计划基金资助项目(No.2017YFB0802002) 国家自然科学基金资助项目(No.61562077 No.U1636114 No.64572521 No.61402530) 武警工程大学基础研究基金资助项目(No.WJY201518)~~
关键词 流密码 伪随机序列 广义割圆类 线性复杂度 stream cipher pseudo-random sequence generalized cyclotomy linear complexity
  • 相关文献

参考文献1

二级参考文献16

  • 1FAN P Z, DAMELL M. Sequence Design for Communications Appli- cations[M]. London: Research Studies Press, 1996.
  • 2WIN M Z, SCHOLTZ R A. Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communi- cations[J]. IEEE Transactions on Communications, 2002, 48(4):679-691.
  • 3LEMPEL A, GREENBERGER H. Families of sequences with optimal Hamming correlation properties[J]. IEEE Transactions on Information Theory, 1974, 20(1): 90-94.
  • 4PENG D Y, FAN P Z. Lower bounds on the hamming auto- and cross-correlations of frequency-hopping sequences[J]. IEEE Transac-tions on Information Theory, 2004, 50(9): 2149-2154.
  • 5PENG D Y, et al. The average Hamming correlation for the cubic polynomial hopping sequences[A]. IEEE IWCMC 2008, International Conference on Wireless Communications and Mobile Computing[C]. Crete, Greece, 2008. 464-469.
  • 6CHU W S, COLBOURN C J. Optimal frequency-hopping sequences via cyclotomy[J]. IEEE Transactions on Information Theory, 2005, 51(3):1139-1141.
  • 7KE P H, ZHANG S Y. Frequency-hopping sequences based on d-form functions[J]. The Journal of China University of Posts and Telecom- munications, 2010, 17(4): 58-62.
  • 8DING C S, YANG Y, TANG X H. Optimal sets of frequency hopping sequences from linear cyclic codes[J]. IEEE Transactions on Informa- tion Theory, 2010, 56(7): 3605-3612.
  • 9GE G N, MIAO Y, YAO Z X. Optimal frequency hopping sequences auto- and cross-correlation properties[J]. IEEE Transactions on Infor- mation Theory, 2009, 55(2): 867-879.
  • 10ZHANG Y, KE P H, ZHANG S Y. Optimal frequency-hopping se- quences based on cyclotomy[A]. ETCS 2009, First International Workshop on Education Technology and Computer Science[C]. Wu han, China, 2009.1122-1126.

共引文献5

同被引文献9

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部