期刊文献+

针对异常序列检测的非法入侵识别算法 被引量:6

Illegal intrusion detection algorithm based on abnormal signalse quences
下载PDF
导出
摘要 针对非法入侵带来的室内安全隐患,聚焦于目前应用广泛的Wi-Fi技术,首次设计提出了一种通过学习合法用户的行为习惯,再进行异常序列检测进而甄别非法入侵者的识别算法。对收集到Wi-Fi信号的CSI特征值进行去噪和信号分段,使用隐马尔科夫模型对用户的行为建模。根据模型输出的概率不断调整判断的阈值,使学习训练的模型随着时间的推移越来越符合用户的行为特征。实验结果表明检测准确率可以达到93.4%,达到了实时准确检测的目的。 Faced with indoor security problem brought by illegal intrusion and the prevalent Wi-Fi technique,this paperfirstly designs a novel algorithm based on abnormal sequences detection to learn users’behavior habits to identify illegalintruder.The algorithm takes collected CSI(Channel State Information)as input signal.After denoising and segmentation,the algorithm leverages HMM(Hidden Markov Model)to learn users’behavior habits,and then adjusts detectionthreshold according to the output probability value.As time passed by,the model will be more close to users’behaviorfeature.Finally tailored models will be built for different users,and distinguish the intruder.Experiments have demonstratedthat detection accuracy can achieve93.4%,thus the algorithm has realized real-time correct identification purpose.
作者 霍世敏 赵菊敏 李灯熬 朱飑凯 HUO Shimin;ZHAO Jumin;LI Deng ao;ZHU Biaokai(College of Information Engineering, Taiyuan University of Technology, Taiyuan 030024, China)
出处 《计算机工程与应用》 CSCD 北大核心 2017年第20期68-74,共7页 Computer Engineering and Applications
基金 山西省国际科技合作项目(No.2015081009) 教育部2012年高等学校博士学科点专项科研基金联合资助课题(No.20121402120020) 国家自然科学基金青年科学基金(No.61303207) 国家自然科学基金面上项目(No.61572346 No.61572347)
关键词 入侵检测 WI-FI技术 异常序列检测 隐马尔科夫模型 intrusion detection Wi-Fi technique abnormal sequences detection hidden Markov model
  • 相关文献

参考文献4

二级参考文献49

  • 1庞彦伟,刘政凯,俞能海.融合奇异值分解和主分量分析的人脸识别算法[J].信号处理,2005,21(2):202-205. 被引量:13
  • 2李志农,曾明如,韩捷,何永勇,褚福磊.主分量分析和因子隐Markov模型在机械故障诊断中的应用[J].机械强度,2007,29(1):25-29. 被引量:3
  • 3苑宇,马孝江.基于主分量分析的柴油机振动信号特征提取[J].中国机械工程,2007,18(8):971-975. 被引量:9
  • 4郭志波,杨静宇,刘华军,严云洋.基于矩阵完备投影的快速主分量分析算法[J].中国图象图形学报,2007,12(4):628-632. 被引量:2
  • 5Box G, Jenkins G, Reinsel G. Time Series Analysis: Forecasting and Conla'ol[M]. Upper Saddle River: Prentice Hall, 1994.1 - 784.
  • 6Keogh E J.A decade of progress in indexing and mining large time series databases[ A]. Dayal U. International Conference on Very Large Data Bases[ C]. San Fransisco: Morgan Kaufmaim, 2006.1268 - 1269.
  • 7Faloutsos C, Ranganathan M, Manolopoulos Y. Fast subse- quence matching in time-series databases[ A]. Snodgrass R T.ACM Conference on Management of Data [ C ]. New York: ACM, 1994.419 - 429.
  • 8Keogh E, Pazzani M. An enhanced representation of time series which allows fast and accurate classification, clustering and rel- evance feedback[ A ]. Stolorz P E. ACM Knowledge Discovery and Data Mining[C] .New York: ACM, 1998.239 - 243.
  • 9Keogh E, Chakrabarti K, Pazzani M, Mehrotra S. Dimensionali- ty reduction for fast similarity search in large time series databases[ A ]. Knowledge and Information System [ C ]. Lon- don: Springer, 2001.263 - 286.
  • 10Lin J, Keogh E J, Wei L, and S. Lonardi. Experiencing sax: a novel symbolic representation of time series[ A ]. Data Mining and Knowledge Discovery[ C]. London: Springer, 2007. 107 - 144.

共引文献83

同被引文献59

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部