期刊文献+

平行坐标系聚类数据的力导向分段骨骼绑定绘制 被引量:2

A Force-Directed Skeleton-Based Bundling with Clustering in Parallel Coordinates
下载PDF
导出
摘要 针对现有平行坐标系聚类数据在边绑定时线束可能过度弯曲和位置偏移,导致用户对数据分布特征的视觉认知产生曲解的问题,提出基于力导向分段式骨骼布局的边绑定方法.首先通过优化的力场模型完成簇间分离布局;然后建立簇内数据量与线束偏移量的负向关联,将簇间分离时线束的移动量调整到规模较小的簇;最后采用分段式骨骼作为簇内线束收敛的基准,生成两端快速收敛、中间呈带状的线束形态,以改善整体绘制效果.实验结果表明,该方法可以明显地改善视图对聚类中心值、数据离散度等数据分布特征表达的准确性,以及视图的整体绘制效果. In the light of misrecognition which caused by over-stretched and over-deviation of cluster curves during edge bundling in parallel coordinates plot,we proposed a force-directed skeleton-based bundling method(FDSBB)for Clustering data.Firstly,a optimized force-directed algorithm was used to form the layout of skeleton for each cluster.Secondly,the size of each cluster was taken into consideration to adjust the repel force between clusters,so the offsets of all clusters were transferred to the minority.Finally,we developed poly-skeleton to bundle the cluster in a band-form,which mapping the distribution attributes of clustering data(such as the value of the cluster center,correlation of clustering data,etc)more objectively.Experimental results show that FDSBB method could apparently improve the visual performance of clustering data in parallel coordinates
作者 巫滨 曹卫群 Wu Bin;Cao Weiqun(School of Information Science and Technology, Beijing Forestry University, Beijing 100083;School of Art and Design , Henan University of Science and Technology, Luoyang 471003)
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2017年第10期1807-1815,共9页 Journal of Computer-Aided Design & Computer Graphics
基金 中央高校基本科研业务费专项资金资助(2015ZCQ-XX) 河南省科技厅软科学研究基金(142400410036)
关键词 聚类绑定 分布属性 力导向算法 分段式骨骼 cluster bundling distribution attributes force-directed algorithm poly-skeleton
  • 相关文献

参考文献4

二级参考文献80

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2曹锋,周傲英.基于图形处理器的数据流快速聚类[J].软件学报,2007,18(2):291-302. 被引量:24
  • 3Keim D A. Information visualization and visual data mining [J]. IEEE Trans on Visualization and Computer Graphics, 2002, 8(1): 1-8.
  • 4Inselberg A. The plane with parallel coordinates [J]. The Visual Computer, 1985, 1(1) : 69-91.
  • 5Hoe H M, Park D Y. Enhancing parallel coordinate plots [J]. Journal of the Korean Statistical Society, 2008. 37(2) : 129-133.
  • 6Ellis G, Dix A J. A taxonomy of clutter reduction for information visualization [J]. IEEE Trans on Visualization and Computer Graphics, 2007, 13(6) : 1216-1223.
  • 7Santamaria R, Theron R, Quintales L. A visual analytics approach for understanding biclustering results from microarray data [J]. BioMed Central Bioinformatics, 2008, 9 (1) : 247-265.
  • 8Zhou Hong, Cui Weiwei, Qu Huamin, et al. Splatting the lines in parallel coordinates [J].Computer Graphies Forum, 2009, 28(3): 759-766.
  • 9Zhou Hong, Yuan Xiaoru, Qu Huamin, et al. Visual clustering in parallel coordinates [J]. Computer Graphics Forum, 2008, 27(3): 1047-1054.
  • 10Johansson J, Cooper M. A screen space quality method for data abstraction [J]. Computer Graphics Forum, 2008, 27 (3): 1039-1046.

共引文献19

同被引文献7

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部