期刊文献+

基于改进最小均方算法的矿尘粒径分布研究 被引量:1

Study on the Size Distribution of Improved LMS Algorithm Based on Dust Particle
下载PDF
导出
摘要 为了提高颗粒检测实验的精度,使测量的数据更加准确,需建立颗粒粒径分布软测量模型。通过改进最小均方算法,测量多个波长下的消光值来获得待测颗粒系的粒径分布曲线,着重分析Mie散射的原理,计算消光系数矩阵。与多种反演算法进行比较,并且加入不同的噪声,验证最小均方算法的实验数据精确度较高。 In order to improve the precision of particle detection experiment and make the measured data moreaccurate,this paper establishes soft sensor model of the particle size dis tribution.This paper measures the lightextinction data at multi-wavelengths to obtain the particle size distribution curve of the particle system to be measuredby improving the least mean square algorithm,focuses on the analysis of the principle of MIE scattering,calculates theextinction coefficient matrix.Different degrees of noise and various of inversion algorithms are added to compare toprove that the least mean square algorithm has high precision in the experimental result.
作者 赵延军 张丹 冯国旗 Zhao Yanjun;Zhang Dan;Feng Guoqi(College of Electrical Engineering, North China University of Science and Technology,Tangshan Hebei 063210)
出处 《现代工业经济和信息化》 2017年第17期10-11,共2页 Modern Industrial Economy and Informationization
基金 国家自然科学基金资助项目(51476154)
关键词 光全散射法 消光系数矩阵 最小均方算法 精确度 light scattering extinction coefficient matrix the least mean square algorithm precision
  • 相关文献

参考文献4

二级参考文献35

  • 1SU MingXu,CAI XiaoShu,XUE MingHua,DONG LiLi,XU Feng.Particle sizing in dense two-phase droplet systems by ultrasonic attenuation and velocity spectra[J].Science China(Technological Sciences),2009,52(6):1502-1510. 被引量:11
  • 2苏明旭,蔡小舒,徐峰,张金磊,赵志军.超声衰减法测量悬浊液中颗粒粒度和浓度[J].声学学报,2004,29(5):440-444. 被引量:52
  • 3肖海英,何方白.一种时域变步长BLMS自适应算法[J].西南科技大学学报,2006,21(2):30-35. 被引量:12
  • 4菅立川,齐宏,阮立明,安巍,谈和平.微粒群算法反演粒径分布的研究[J].节能技术,2007,25(1):7-9. 被引量:3
  • 5Hayin S. Adaptive Filter Theory[M].北京:电子工业出版社,2003: 70-267.
  • 6Butterweck H J. Steady-state analysis of the long LMSadaptive filter [J]. Signal Processing, 2011, 91(4): 690-701.
  • 7Duttweiler D L. Proportionate normalized least-mean-squares adaptation in echo cancelers[J]. IEEE Transactionson Speech and Audio Processing, 2000, 8(5): 508-518.
  • 8Borisagar K R, Sedani B S, and Kulkarni G R. Simulationand performance analysis of LMS and NLMS adaptive filtersin non-stationary noisy environment [C]. InternationalConference on Computational Intelligence andCommunication Systems, Gwalior, 2011: 682-686.
  • 9Feuer A. Performance analysis of the block least mean squarealgorithm[J]. IEEE Transactions on Circuits and Systems,1985, CAS-32(9): 960-963.
  • 10Bismor D. LMS algorithm step size adjustment for fastconvergence[J]. Archives of Acoustics, 2012,37(1): 31-40.

共引文献28

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部