期刊文献+

LLE算法的模态识别及影响因素研究 被引量:1

Modal identification and influence factors of LLE algorithm
下载PDF
导出
摘要 局部线性嵌入算法(LLE)是一种实现对高维数据降维的流形学习算法,可基于结构响应数据进行模态参数识别,算法的噪声敏感度和稳定性对参数识别精度具有重要影响。本文以一块复合材料板为研究对象,利用LLE算法对其振动响应数据进行降维处理从而实现模态识别,重点分析了该算法的噪声敏感度和其在不同采样频率下的流形特征稳定性,同时利用模态置信准则(MAC)衡量LLE算法提取得到的振型与有限元振型的相关性。结果表明,利用LLE算法识别的模态参数具有较高的精度,且LLE算法具有较强的抗噪声干扰能力,采样频率对LLE算法的影响与采样定理相一致。 Locally linear embedding(LLE)is a manifold learning algorithm for dimensionality reduction,which can identify modal parameters based on structural response datas.A composite plate has been taken as an example in this paper to analyze the accuracy of modal parameters identified by LLE with different influence parameters,such as,different sampling frequencies,white noise with different magnitudes.The corresponding modal shapes identified by finite element method(FEM)and LLE has been compared by modal assurance criterion(MAC)in this paper to quantify the accuracy of the modal parameters identified by LLE.The results show that LLE algorithm can identify modal parameters with high accuracy,and the algorithm has strong anti-noise ability.And the influence of sampling frequency is consistent with sampling theory.
作者 董龙雷 郝彩凤 张静静 DONG Longlei;HAO Caifeng;ZHANG Jingjing(State Key Laboratory for Strength and Vibration, Xi’an Jiaotong University, Xi’an 710049, China)
出处 《强度与环境》 2017年第5期41-46,共6页 Structure & Environment Engineering
关键词 LLE算法 模态识别 噪声敏感度 稳定性 LLE algorithm modal identification noise sensitivity stability
  • 相关文献

参考文献2

二级参考文献13

  • 1黄鸿,李见为,冯海亮.基于有监督的核局部线性嵌入的人脸性别识别[J].光电子.激光,2009,20(2):248-251. 被引量:3
  • 2CONTI C, DEHOMBREUX P, VERLINDEN O, et al. Analysis of the performance of operational data analysis methods [J]. Mechanical Systems and Signal Processing, 1996, 10(5): 579-593.
  • 3KERSCHEN G, GOLINVAL J C, VAKAKIS A, et al. The method of proper orthogonal decomposition for dynamical characterization and order reduction of me- chanical systems: an overview [J]. Nonlinear Dynam- ics, 2005, 41(1/2/3): 147-169.
  • 4HAN S, FEENY B. Application of proper orthogonal decomposition to structural vibration analysis[J].Mechanical Systems and Signal Processing, 2003, 17 (5) : 989-1001.
  • 5LENAERTS V, KERSCHEN G, GOLINVAL J C. Proper orthogonal decomposition for model updating of non-linear mechanical systems J]. Mechanical Sys- tems and Signal Processing, 2001, 15(1): 31-43.
  • 6PONCELET F, KERSCHEN G, GOLINVAL G C, et al. Output-only modal analysis using blind source sep aration techniques [J]. Mechanical Systems and Signal Processing, 2007, 21(6): 2335-2358.
  • 7ZHOU Wenliang, CHELIDZE D. Blind source separation based vibration mode identification [J]. Mechani- cal Systems and Signal Processing, 2007, 21(8) : 3072 -3087.
  • 8ROWELS S T, SAUl. L K. Nonlinear dimensionality reduction by locally linear embedding [J].Science, 2000, 290(22): 2323-2326.
  • 9CHANG Hong, YEUNG Dit-Yan. Robust locally lin- ear embedding [J]. Pattern Recognition, 2006, 39 (6) : 1053-1065.
  • 10王开军,张军英,李丹,张新娜,郭涛.自适应仿射传播聚类[J].自动化学报,2007,33(12):1242-1246. 被引量:145

共引文献19

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部