摘要
针对3种典型的基于深度相机的同步定位与地图构建(SLAM)算法,包括RGB-D SLAM V2,RTAB-Map和DVO SLAM,介绍这3种SLAM算法的理论特点。采用两个公开的SLAM数据集,包括TUM数据集和ICL-NUIM数据集,进行SLAM算法的评测,评测指标包括SLAM算法的精确度、运行性能以及鲁棒性。评测的实验结果表明,在选择基于深度相机的SLAM算法时:如果考虑精确度和鲁棒性优先于运行性能,则选择RGB-D SLAM V2;如果考虑运行性能和鲁棒性优先于精确度,则选择DVO SLAM;如果考虑精确度和运行性能优先于鲁棒性,则选择RTAB-Map。
Three typical depth camera based simultaneous localization and mapping(SLAM)algorithms,including RGBD SLAM V2,RTABMap and DVO SLAM,whose theories and features were introduced.By using two opensource SLAM datasets,including TUM dataset and ICLNUIM dataset,the above three SLAM algorithms were evaluated,and the index included the accuracy,performance and robustness of the SLAM algorithms.The results of the experiments demonstrate that RGBD SLAM V2is chosen when accuracy and robustness are prior to speed;DVO SLAM is chosen when speed and robustness are prior to accuracy;RTABMap is chosen when speed and accuracy are prior to robustness.
作者
满春涛
曹淼
李巍
MAN Chun-tao;CAO Miao;LI Wei(School of Automation, Harbin University of Science and Technology, Harbin 150080,China;Key Laboratory of Complex System and Intelligence Science,Institute of Automation, China Academy of Sciences, Beijing 100190, China)
出处
《电机与控制学报》
EI
CSCD
北大核心
2017年第12期60-65,共6页
Electric Machines and Control
基金
黑龙江省自然科学基金(F2016027)