期刊文献+

高维非线性随机微分方程组的指数稳定性

Exponential stability of high-dimensional nonlinearstochastic differential equations
下载PDF
导出
摘要 随机系统的稳定分析,近年来逐渐受到很多概率论学者与工程技术人员的研究,并取得了重要的研究成果,而前人研究往往以Lyapunov方法为工具,从系统的生成元入手,得到系统稳定性的依据.文章从随机微分方程组的变换入手,将随机微分方程组局部的变换为带随机项的常微分方程组,然后通过类似于Hurwitz的分析技巧,从而得到系统的指数稳定性判据. In recent years,the analysis of Stochastic system stability has been studied by a lot of probability theory research scholars and engineering technical personnel,and they have achieved important research results,the previous studies generally by means of Lyapunov method,from the generating element of the system which the stability of the system based on.In this paper,starting from the transformation of stochastic differential equations,stochastic differential equations are partially transformed into ordinary differential equations with random items.Afterwards,through analyzing skills similar to the Hurwitz,the exponential stability condition of the system is obtained.
作者 王小芹 常萌萌 秦志芳 WANG Xiaoqin;CHANG Mengmeng;QIN Zhifang(Anyang University Math Staff Room , Anyang 455000,China)
出处 《周口师范学院学报》 CAS 2017年第2期32-35,共4页 Journal of Zhoukou Normal University
关键词 Lyapunov稳定 随机微分方程组 连续半鞅 It^o公式 指数稳定性 Lyapunov stability stochastic differential equations Ito formula exponential stability
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部