摘要
研究一类无穷区间上的三阶两点边值问题:{x′″(t)+a(t)f(t,x(t),x'(t),x″(t))=0,t∈(0,+∞),x(0)=0,x'(0)-bx″(0)=0,x″(+∞)=c,其中a∈C([0,+∞),(0,+∞)),f∈C([0,+∞)×R^3,R),b≥0,c∈R.综合运用上下解方法和Schauder不动点定理,得到了上述三阶无穷边值问题解的存在性.
We concerned with a third-order two-point boundary value problem on infinite intervals of the form x?(t)+a(t)f(t,x(t),x′(t),x″(t))=0,t∈(0,+¥),x(0)=0,x′(0)-bx″(0)=0,x″(+¥)=c,{where a∈C([0,+∞),(0,+∞)),f∈C([0,+∞)×R3,R),b≥0,c∈R.The existence of solution is obtained by using the upper and lower solution method together with Schauder fixed point theorem for the above third-order infinite boundary value problem.
作者
杨赞
裴明鹤
Yang Zan;Pei Minghe(Tongji Zhejiang College,Jiaxing 314051,China;School of Mathematics and Statistics,Beihua University,Jilin 132013,China)
出处
《北华大学学报(自然科学版)》
CAS
2017年第6期710-718,共9页
Journal of Beihua University(Natural Science)
基金
吉林省教育厅科学技术研究项目(2016-45)
关键词
三阶无穷边值问题
上下解方法
SCHAUDER不动点定理
存在性
third-order infinite boundary value problem
upper and lower solution method
Schauder fixed theorem
existence