期刊文献+

On the radiogenic heat production of igneous rocks 被引量:6

On the radiogenic heat production of igneous rocks
下载PDF
导出
摘要 Radiogenic heat production is a physical parameter crucial to properly estimating lithospheric temperatures and properly understanding processes related to the thermal evolution of the Earth. Yet heat production is, in general, poorly constrained by direct observation because the key radiogenic elements exist in trace amounts making them difficulty image geophysically. In this study, we advance our knowledge of heat production throughout the lithosphere by analyzing chemical analyses of 108,103 igneous rocks provided by a number of geochemical databases. We produce global estimates of the average and natural range for igneous rocks using common chemical classification systems. Heat production increases as a function of increasing felsic and alkali content with similar values for analogous plutonic and volcanic rocks. The logarithm of median heat production is negatively correlated(r^2=0.98)to compositionally-based estimates of seismic velocities between 6.0 and 7.4 km s^(-1), consistent with the vast majority of igneous rock compositions. Compositional variations for continent-wide models are also well-described by a log-linear correlation between heat production and seismic velocity. However, there are differences between the log-linear models for North America and Australia, that are consistent with interpretations from previous studies that suggest above average heat production across much of Australia. Similar log-linear models also perform well within individual geological provinces with^1000 samples. This correlation raises the prospect that this empirical method can be used to estimate average heat production and natural variance both laterally and vertically throughout the lithosphere. This correlative relationship occurs despite a direct causal relationship between these two parameters but probably arises from the process of differentiation through melting and crystallization. Radiogenic heat production is a physical parameter crucial to properly estimating lithospheric temperatures and properly understanding processes related to the thermal evolution of the Earth. Yet heat production is, in general, poorly constrained by direct observation because the key radiogenic elements exist in trace amounts making them difficulty image geophysically. In this study, we advance our knowledge of heat production throughout the lithosphere by analyzing chemical analyses of 108,103 igneous rocks provided by a number of geochemical databases. We produce global estimates of the average and natural range for igneous rocks using common chemical classification systems. Heat production increases as a function of increasing felsic and alkali content with similar values for analogous plutonic and volcanic rocks. The logarithm of median heat production is negatively correlated(r^2=0.98)to compositionally-based estimates of seismic velocities between 6.0 and 7.4 km s^(-1), consistent with the vast majority of igneous rock compositions. Compositional variations for continent-wide models are also well-described by a log-linear correlation between heat production and seismic velocity. However, there are differences between the log-linear models for North America and Australia, that are consistent with interpretations from previous studies that suggest above average heat production across much of Australia. Similar log-linear models also perform well within individual geological provinces with^1000 samples. This correlation raises the prospect that this empirical method can be used to estimate average heat production and natural variance both laterally and vertically throughout the lithosphere. This correlative relationship occurs despite a direct causal relationship between these two parameters but probably arises from the process of differentiation through melting and crystallization.
出处 《Geoscience Frontiers》 SCIE CAS CSCD 2017年第5期919-940,共22页 地学前缘(英文版)
基金 supported by a University of Adelaide summer research scholarship as part of this work
关键词 Heat generation lgneous rocks Heat producing elements Continental lithosphere Seismic velocity DENSITY Heat generation Igneous rocks Heat producing elements Continental lithosphere Seismic velocity Density
  • 相关文献

共引文献52

同被引文献186

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部